C5 - Econometric Modeling
-
-
Finding the balance—measuring risks to inflation and to GDP growth
Using our new quantitative tool, we show how the risks to the inflation and growth outlooks have evolved over the course of 2023. -
Making It Real: Bringing Research Models into Central Bank Projections
Macroeconomic projections and risk analyses play an important role in guiding monetary policy decisions. Models are integral to this process. This paper discusses how the Bank of Canada brings research models and lessons learned from those models into the central bank projection environment. -
Testing Collusion and Cooperation in Binary Choice Games
This paper studies the testable implication of players’ collusive or cooperative behaviour in a binary choice game with complete information. I illustrate the implementation of this test by revisiting the entry game between Walmart and Kmart. -
Machine learning for economics research: when, what and how
This article reviews selected papers that use machine learning for economics research and policy analysis. Our review highlights when machine learning is used in economics, the commonly preferred models and how those models are used. -
Identifying Nascent High-Growth Firms Using Machine Learning
Firms that grow rapidly have the potential to usher in new innovations, products or processes (Kogan et al. 2017), become superstar firms (Haltiwanger et al. 2013) and impact the aggregate labour share (Autor et al. 2020; De Loecker et al. 2020). We explore the use of supervised machine learning techniques to identify a population of nascent high-growth firms using Canadian administrative firm-level data. -
A Blueprint for the Fourth Generation of Bank of Canada Projection and Policy Analysis Models
The fourth generation of Bank of Canada projection and policy analysis models seeks to improve our understanding of inflation dynamics, the supply side of the economy and the underlying risks faced by policy-makers coming from uncertainty about how the economy functions. -
Predicting Changes in Canadian Housing Markets with Machine Learning
We apply two machine learning algorithms to forecast monthly growth of house prices and existing homes sales in Canada. Although the algorithms can sometimes outperform a linear model, the improvement in forecast accuracy is not always statistically significant. -
Forecasting Risks to the Canadian Economic Outlook at a Daily Frequency
This paper quantifies tail risks in the outlooks for Canadian inflation and real GDP growth by estimating their conditional distributions at a daily frequency. We show that the tail risk probabilities derived from the conditional distributions accurately reflect realized outcomes during the sample period from 2002 to 2022. -
Combining Large Numbers of Density Predictions with Bayesian Predictive Synthesis
I show how to combine large numbers of forecasts using several approaches within the framework of a Bayesian predictive synthesis. I find techniques that choose and combine a handful of forecasts, known as global-local shrinkage priors, perform best.