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Abstract 
This paper examines the price impacts of liquidations in decentralized finance (DeFi) 
lending and how they vary with fixed-spread and auction-based liquidation mechanisms. 
Using a theoretical framework, we show that the impact of these mechanisms depends 
on the liquidator participation cost, which determines the level of competition. Auctions 

mitigate the price impact of liquidations when the participation cost is low, but amplify 
them when it is high. Empirical analysis of Ethereum blockchain data shows that auction-
based liquidations lead to smaller price drops by increasing competition, which raises 
collateral prices and reduces liquidation volumes. These findings underscore the 
importance of liquidation design in promoting market stability and mitigating fire-sale 

risks in DeFi lending. 

Topics: Digital currencies and fintech 
JEL codes: D47, D44, G33, G20 

Résumé 
Dans cette étude, nous examinons les effets produits sur les prix par les liquidations 
dans le secteur des prêts de la finance décentralisée, et comment ces effets varient 
selon qu’ils proviennent d’une liquidation par écart fixe ou par adjudication. À partir d’un 

cadre théorique, nous montrons que l’effet de ces mécanismes de liquidation dépend du 
coût de participation assumé par les liquidateurs, lequel détermine le niveau de 
concurrence. Le processus d’adjudication atténue l’effet d’une liquidation sur les prix 
lorsque le coût de participation est bas, mais l’amplifie lorsque ce coût est élevé. D’après 
notre analyse empirique de la chaîne de blocs d’Ethereum, les liquidations par 

adjudication limitent les baisses de prix en intensifiant la concurrence, ce qui fait monter 
les prix des garanties et réduit les volumes des liquidations. Ces constats soulignent 
l’importance des mécanismes de liquidation lorsqu’il s’agit de promouvoir la stabilité des 
marchés et d’atténuer les risques de vente en catastrophe dans le secteur des prêts de 
la finance décentralisée. 

Sujets : Monnaies numériques et technologies financières 

Codes JEL : D47, D44, G33, G20 

 



1 Introduction

Asset liquidation comes in different forms. One approach involves an immediate sale, where

the distressed seller quickly disposes of assets to the first available buyer, often at a discounted

price. Factors such as binding margin constraints or demands from capital providers neces-

sitate the immediacy of disposal. For example, during a margin call, a leveraged investor is

forced to liquidate their stock holdings for immediate liquidity, which demands a liquidity

premium. The result is a transaction price significantly below the asset’s fundamental value.

Another common approach to liquidation is through an auction process, where assets are sold

to the highest bidder. Unlike immediate sales, auctions allow for greater bidder competition.

Nevertheless, studies have shown that even in auction settings, liquidation prices tend to

be discounted from fundamental values. For example, mortgage foreclosures use auctions to

liquidate the underlying properties, with foreclosure prices consistently below market values

(Campbell et al., 2011; Park and Bang, 2014; Donner, 2020).1 Bankruptcy proceedings of

distressed firms also often involve liquidation auctions. Sweden, for example, employs an

automated bankruptcy auction system, where Eckbo and Thorburn (2008) find evidence of

fire-sale discounts in piecemeal liquidations of distressed firms.2

In a frictionless market, the mis-pricing caused by fire sales would be corrected almost

immediately through arbitrage. However, empirical studies have shown that fire sales nega-

tively impact asset prices for a significant period of time, even in the most liquid of markets

(Coval and Stafford, 2007; Falato et al., 2021; Guren and McQuade, 2020). It remains

unclear, however, whether the mechanism of liquidation per se plays a role in its price im-

pacts. This question is challenging to address, as it is rare to observe variation in liquidation

mechanisms for the same set of assets.

This paper addresses this gap by leveraging the unique context of decentralized finance

(DeFi). In this context, two distinct mechanisms are employed to liquidate the same set

of collateral assets across different lending protocols. To the best of our knowledge, this is

the first study to analyze the relationship between asset liquidation mechanisms and their

impact on asset prices.

We first present a simple theoretical framework that models the incentives of potential

liquidators under different liquidation mechanisms and derive the resulting market outcomes.

Using block-by-block transaction-level data from the Ethereum blockchain, we then empiri-

cally document the temporary price impacts of collateral liquidations under different liqui-

dation mechanisms, and compare how these impacts differ across mechanisms. Our study

1Depending on country and methodology, the foreclosure discount ranges from 8% to 27%.
2In the United States, large Chapter 11 bankruptcy cases often involve auction mechanisms in one form

or another, as noted by Baird and Rasmussen (2003).
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sheds light on how liquidator incentives shape the liquidation outcomes, contributing to the

observed price volatility in cryptocurrencies. These insights have potential implications for

policy discussions surrounding asset liquidations, particularly in the context of bankruptcy

liquidation auctions where fire-sale risks are a major concern (Eckbo and Thorburn, 2008,

2009; Bhattacharyya and Singh, 1999; Hansen and Thomas, 1998). Our results suggest

that the relative fixed cost of participation—specifically, the cost relative to liquidation

revenue—is a crucial factor in mitigating fire-sale risks, and that the comparison between

mandatory auctions and alternative mechanisms critically hinges on this cost factor.

In DeFi, lending is one of the most important services.3 Compared to lending in tradi-

tional finance, DeFi lending protocols are plagued by the anonymity of borrowers and thus

the infeasibility of credit checks. As a result, virtually all DeFi lending is collateralized (ex-

cluding flash loans), with a typical haircut ranging from 20% to 40%. However, since the

collateral assets are cryptocurrencies such as Ether (ETH) or Bitcoin (BTC), the collateral

value is subject to large fluctuations due to the extreme price volatility of cryptocurrencies.

The price volatility can lead to a sudden depreciation of collateral value below the borrowed

amount and erode the solvency of the protocols.

The solution to this problem is found in enforcing collateral liquidation on borrowing

positions that become under-collateralized (that is, with a loan-to-value (LTV) ratio over a

certain threshold).4 This is similar to the margin call in leveraged trading, except that the

real-time LTV for every borrowing position is public information. As a result, any blockchain

user has the opportunity to monitor LTVs, identify positions that violate the LTV thresh-

old, and initiate the liquidation process on these under-collateralized positions. In theory,

this means that anyone can become a liquidator ; however, in practice, liquidation in DeFi

is a highly specialized activity due to the level of expertise required to set up bots with

sophisticated configurations (Dos Santos et al., 2022; Lehar and Parlour, 2023). These spe-

cialized bots can mass liquidate under-collateralized positions within seconds, since there is

virtually no capital constraint due to the use of flash loans. This invention unique to DeFi

eliminates credit risk and allows for unconstrained flow of capital for any arbitrage trade,

including liquidation. Given the instantaneity and ease of funding, the DeFi liquidation pro-

cess can inflate the market supply of cryptocurrencies that serve as collateral assets, putting

downward pressure on asset prices and amplifying negative shocks (Lehar and Parlour, 2023;

Sasi-Brodesky and Nassr, 2023).

Interestingly, the liquidation mechanism—that is, how the liquidation price and quantity

3As of October 2024, the total value locked in DeFi lending protocols exceeds $33 billion, making up
37% of value locked in DeFi, according to DefiLlama.

4Note that there is typically a short grace period (a few hours) before liquidation, which allows the
borrower to repay the borrowed asset and lower the LTV to a safe level.
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are determined—varies across different lending protocols in DeFi. Currently, there are two

primary liquidation methods: the fixed-spread mechanism and the auction mechanism. In

a fixed-spread liquidation, the collateral is liquidated at a prespecified fixed discount to

the market price.5 In an auction, the liquidation price is determined by the highest bid.

Fixed-spread liquidation is used in lending platforms such as Aave and Compound, while

the auction is primarily used by MakerDao.6 Our goal is to compare the amplification effects

of the two liquidation mechanisms; that is, how an initial price shock is amplified due to the

collateral liquidation channel.

For this purpose, we develop a tractable model that features a risky cryptocurrency (the

collateral asset), a lending protocol, and a centralized exchange. The model is static. Buyers

and sellers with heterogeneous valuations trading in the centralized exchange determine the

initial equilibrium price of the cryptocurrency. In addition to the cryptocurrency traded

on the exchange, a smaller proportion is locked in a lending protocol as collateral to secure

loans of varying sizes. We disturb the initial equilibrium state by engineering an exogenous

negative demand shock that depresses the price of the cryptocurrency. This renders some

loans under-collateralized and thus liquidable. We then solve the liquidators’ problem under

two alternative assumptions on the liquidation mechanism to derive the total quantity of

liquidated collateral. This determines the new supply function and therefore the new equi-

librium price of the cryptocurrency. If one liquidation mechanism leads to a larger quantity

of liquidated collateral and therefore a lower price in the new equilibrium, we conclude that

it has a larger amplification effect.

Specifically, we define liquidators as specialized agents who can use flash loans to purchase

collateral from liquidations and immediately sell it in the centralized market to make a

profit. Potential liquidators first make an entry decision to become active liquidators, where

entry incurs a fixed cost. Upon entry, an active liquidator is randomly matched with a

liquidation opportunity through a search and matching process. Unmatched eligible loans

are not liquidated.

If a liquidation opportunity is matched with more than one liquidator, they must compete

for the opportunity, and how they compete depends on the liquidation mechanism being

used. Under the fixed-spread mechanism, active liquidators compete by bidding on tips to

the settlement agent, with the highest bidder winning the transaction priority and buying

the collateral at fixed discount. Under the auction mechanism, they compete by bidding on

5The fixed discount is determined through the governance system of the lending protocol, alongside
other parameters. Although this parameter can undergo discrete changes over time, such adjustments occur
infrequently.

6MakerDAO operates on a different business model than Aave or Compound, as it also issues the decen-
tralized stablecoin, DAI. Section 2 describes the difference in greater detail.
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the price of the collateral, and the highest bidder wins the right to buy the collateral at the

winning price. In both cases, the liquidation sells just enough collateral to recover the total

amount of debt, with the remaining collateral (if any) returned to the protocol.

Under the two alternative liquidation mechanisms, we solve for the liquidators’ equilib-

rium entry decision and bidding strategy, which determine the number of loans liquidated

(extensive margin) and the quantity of collateral liquidated for each loan (intensive margin).

These two margins jointly determine the total quantity of liquidated collateral and, conse-

quently, the amplification effect. We find that the auction and the fixed-spread mechanism

have opposing effects on these two margins.

The auction mechanism leads to a higher number of liquidated loans compared to the

fixed-spread mechanism (higher extensive margin). This is because there are more active

liquidators under the auction mechanism, resulting in a lower chance of unmatched liquid

able loans and thus a higher number of liquidations. The auction mechanism leads to more

entry because of its higher expected profits for active liquidators. We refer to this as the

entry effect.

In contrast, the auction mechanism lowers the amount of collateral liquidated for each

loan (lower intensive margin). Since liquidators are directly competing on the liquidation

price, the auction mechanism generally has a higher liquidation price than the fixed-spread

mechanism, and therefore a smaller amount of collateral needs to be liquidated. We refer

to this as the competition effect. Note that although liquidators also compete under the

fixed-spread mechanism, it is the settlement agent that benefits from the competition, not

the protocol. By making the liquidation price immune to market forces, the fixed-spread

mechanism opens the door for other parties to extract surplus from market participants.

The net outcome of the two effects depends on the entry cost. If the entry cost is suffi-

ciently low, entry is high enough under both mechanisms to ensure that almost all liquidable

loans are matched and liquidated. Because there is little difference in the extensive margin

for the two mechanisms, the overall outcome is determined by the competition effect. This

leads to a smaller total quantity of liquidated collateral and, therefore, a smaller amplification

effect under the auction mechanism.

If the entry cost is sufficiently high, the reverse is true. The difference in entry is more

pronounced, leading to more liquidations under the auction mechanism. The entry effect

overpowers the competition effect, and therefore the auction mechanism has a larger ampli-

fication effect.

In an intermediate range of entry cost, the comparison hinges on the size of the initial

demand shock. A larger shock generally leads to a lower equilibrium price, and therefore a

lower expected profit since expected profits are proportional to the price. Thus, for larger
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shocks, the expected profits are too low to attract a sufficient number of active liquidators,

leading to a predominant entry effect. This is similar to the case with high entry cost, where

the fixed-spread mechanism has a smaller amplification effect. Conversely, the case of smaller

shocks is similar to the case with low entry cost, and the auction mechanism has a smaller

amplification effect.

In our empirical analysis, we draw on transaction-level data from the Ethereum blockchain

to examine the price impact of Aave (fixed-spread) and Maker (auction) liquidations. Specifi-

cally, we focus on liquidations backed by wrapped Ether (ETH) and identify the price impact

of a liquidation as the within-the-block change in the price of ETH. ETH prices are inferred

from swap trades right before and after the liquidation transaction in the same block (re-

ferred to as the pre- and post-liquidation market price).7 We find an average 0.054% price

drop for Aave and 0.01% price drop for Maker liquidations, suggesting a smaller price impact

for Maker.

We then examine whether this pattern is driven by confounding factors such as liquidation

sizes, market conditions, initial shocks, debt tokens, or spillover from adjacent liquidations.

We regress the price change of a liquidation on the type of liquidation mechanism, controlling

for liquidation revenue, the pre-liquidation ETH price, fixed effects on the date and debt

token, as well as the characteristics of the liquidation wave it is in. Our results reveal that

the auction mechanism is associated with a significant reduction of the negative price impact.

According to our theory, this result is due to a dominating competition effect, which

leads to a higher liquidation price and consequently a lower liquidation discount for the auc-

tion mechanism. Indeed, the liquidation discount for Maker is on average 1.8%, significantly

lower than Aave’s fixed discount of 5%. When the liquidation discount is included as an

explanatory variable in the price change regression, the coefficient on the liquidation mech-

anism is no longer significant. This suggests that Maker’s smaller price impact is driven by

its lower liquidation discount.

In the model, the lower discount reduces the price impact through the quantity channel.

We use aggregate data to provide supportive evidence on the quantity channel. We document

that Maker liquidates a smaller quantity of ETH per unit of ETH deposited compared to

Aave. This is consistent with our finding of a smaller price impact. Overall, our empirical

results align with the model predictions in the case of relatively low entry cost.

While there is a young though rapidly growing literature on DeFi, most of the focus is

on decentralized exchanges or decentralized stablecoins. Chiu et al. (2023) provide the first

theoretical study of DeFi lending protocols. They examine the sources of fragility of DeFi

7Note that even liquidations within the same block can have different price impacts, since their positions
in the block vary.
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lending caused by its features such as information frictions, oracle problems, and the rigidity

of smart contracts. Two empirical studies show the destabilizing effect of DeFi liquidation.

Lehar and Parlour (2022) focus on collateral liquidation in Aave and Compound (fixed-spread

protocols), finding empirical evidence that such liquidations have negative price impacts on

the price of collateral assets across crypto exchanges. In a similar spirit, Sasi-Brodesky

and Nassr (2023) focus on USDC debt collateralized by ETH (or WETH) in Aave and

Compound, finding a positive correlation between the amount of debt liquidated and ETH’s

price volatility. Our paper provides the first empirical evidence on the price effect of auction

liquidations in Maker, which have been excluded from previous studies.8 We further compare

the price impact of auction liquidations with that of fixed-spread liquidations and investigate

the underlying channel. In addition, we contribute to the DeFi literature by providing a

theoretical framework that explicitly models liquidators’ incentives and strategies.

This paper is also related to the literature on fire sales by providing new evidence on

fire-sale discounts and the price impact of fire sales. Most empirical studies on fire sales

either do not directly observe the transaction price during the fire sale, or do not have the

market price from frequent trades to reliably estimate the fundamental value. One notable

exception is Dinc et al. (2017), who observe both by studying the firm’s sales of minority

equity stakes in third-party public companies. They find that the seller receives an average

fire-sale discount of about 8%. This is likely to be an underestimate because those sales are

voluntary ; that is, potential firms can choose not to sell and thus these unrealized sales are

unobserved in their data. The unique setting of DeFi lending not only allows us to observe

both the transaction price and before-and-after prices on a highly frequent basis, but also

limits the cases of unrealized sales due to DeFi’s forced liquidation model. This allows us

to more accurately estimate fire-sale discounts. We estimate that in auction liquidations,

the fire-sale discount is on average 2% for ETH. This is smaller than the discount found in

traditional finance, likely due to the use of flash loans that eliminate the capital constraint

for liquidators.

The rest of the paper is organized as follows. Section 2 describes the industry background

in detail and how it motivates our model. Section 3 introduces the model and characterizes

the equilibrium under the two mechanisms. Section 4 compares the implications of the

two mechanisms on price volatility. Section 5 provides empirical analysis, and Section 6

concludes.

8Sasi-Brodesky and Nassr (2023) include liquidations in Maker in their descriptive analysis, but not in
the main regression analysis of its effect on price volatility.
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2 Background: Lending and Liquidation Protocols in

Decentralized Finance

We first provide a broad overview of DeFi protocols on the Ethereum blockchain that provide

borrowing and lending services, as well as the collateral liquidation mechanisms. See Chiu

et al. (2023) and Heimbach and Huang (2023) for more institutional details on DeFi.

2.1 Lending Protocols

Two types of DeFi protocols support Crypto borrowing and lending. The first type is based

on a pool -to-peer lending model; most of the largest lending protocols, such as Aave and

Compound, fall into this category. In this model, the protocol holds “liquidity pools” for a

set of crypto assets. The assets in the pools are deposited by depositors who receive interest

over time. Anyone who wants to borrow from one of the pools must first deposit one or

more types of crypto assets as collateral. This model does not create new cryptocurrencies

or stablecoins.

The second type is based on a “vault” model and is closely coupled with the decen-

tralized issuance of stablecoins. The most prominent example is MakerDAO, the issuer of

the stablecoin DAI. In MakerDAO, anyone can deposit any acceptable crypto assets into a

permissionless “vault”, which in turn allows the depositor to borrow against the value of

the crypto assets locked in it. The borrowed asset is DAI, a stablecoin, and DAI is mined

through the creation of a borrowing position. A vault is different from a pool in that it does

not pay interest to the deposited assets.

In both types of lending protocols, repayments must be made in the same borrowed

asset. Unlike a traditional loan, a borrower does not face a fixed time period (that is, loan

maturity) to repay the loan and repayments (partial or full) are accepted at any time.

Because of the high price volatility of crypto assets, a high haircut is applied to the

collateral, which is often referred to as over-collateralization in DeFi lending. As a result,

the maximum loan quantity is a fraction of the value of collateral, and this fraction (that is,

the maximum loan-to-value (LTV) ratio) typically ranges from 66.7% to 82.5%, depending

on the type of collateral asset and borrowed asset. For example, at LTV=66.7%, for every 1

ETH of collateral, a borrower can take a loan worth at most 0.667 ETH. In this calculation,

the value of ETH relative to the value of the borrowed asset is based on the price feed

provided by the oracles.

After loan origination, the LTV ratio fluctuates because the prices of crypto assets change

over time. The protocol defines a threshold for LTV below which a loan becomes under-
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collateralized and can be liquidated. This threshold is often referred to as the liquidation

threshold and can be equal to or slightly higher than the maximum LTV ratio. For example,

the threshold is equal to the maximum LTV ratio in MakerDAO, but can be 5–7.5% higher

in Aave and Compound.

Under-collateralization in DeFi is analogous to default in traditional finance. In a repo

contract, the lender has the right to liquidate the collateral pledged if default occurs. Simi-

larly, under-collateralization in DeFi triggers the transfer of collateral from the borrower to

the lender. The lender liquidates just enough collateral to recover (a specific fraction of or all

of) the debt plus any predetermined liquidation fees, and transfers the remaining collateral

(if any) back to the borrower.

The liquidation threshold is frequently reached because the price of crypto assets is

highly volatile. In theory, borrowers can make repayments manually to avoid liquidation.

This is, however, impractical for an average user because it requires constant monitoring

of the collateral price and transaction fees. An average user typically does not have the

infrastructure for such intense monitoring (Qin et al., 2021).9

2.2 Liquidation Mechanisms

If a DeFi loan is under-collateralized, it is eligible for liquidation. An eligible loan is not

automatically up for liquidation until someone starts the liquidation process. In principle,

anyone can participate in this process, but in practice, this is a highly specialized activity

(Lehar and Parlour, 2022). It requires substantial expertise, which creates the entry bar-

rier. Those who participated in liquidations, often called liquidators, typically operate bots

(that is, automated tools that perform a blockchain price lookup, price observation, and

liquidation attempt if the liquidation threshold is triggered) (Qin et al., 2021). Such bots

are professionally set up and maintained, and typically involve flash loans, which we discuss

next. All of these are knowledge barriers to participating in liquidations.

One crucial feature that separates DeFi from traditional finance is the availability of

flash loans, which essentially eliminates the capital constraint and credit risk in certain

transactions. For example, if a trader wants to do an arbitrage operation in traditional

finance, they need to first come up with some funding to buy the asset in one market and

then sell the asset in another market. If they do not have the funds, they can borrow from

some lender. During this transaction, both the trader and the lender face risks. Prices

could change during the operation, which can lead to a loss for the trader. Because of the

potential loss, the trader may not be able to repay the loan and the lender faces credit risks.

9New tools have recently been created to help borrowers monitor their LTV ratios to avoid liquidations.
These tools are not perfect, and liquidations still occur in blockchains.
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Due to the risk, the trader may only be able to borrow a limited amount of capital for this

transaction. Flash loans alleviate this problem. They allow traders to borrow, trade, and

repay in a single transaction. If repayment cannot be made, the whole transaction will not

happen. This guarantees repayment and significantly reduces the risks faced by liquidators

and lenders. Consequently, flash loans greatly alleviate the capital constraint for engaging

in liquidation trading.10

DeFi lending protocols specify the process through which the collateral of an under-

collateralized loan is sold to liquidators; this is referred to as the liquidation mechanism.

DeFi lending protocols adopt two primary liquidation mechanisms. One mechanism uses a

fixed liquidation spread and the other is based on an auction process.

Fixed-Spread Liquidation The pool-to-peer lending protocols, such as Aave, Com-

pound, and dYdX, allow any liquidator to identify an under-collateralized loan and purchase

its collateral asset at a predetermined discount from the current market price provided by

the oracle. The amount of collateral that can be purchased depends on the amount of debt.

For example, in Aave, each liquidation aims to recover up to 50% of the total outstanding

debt (loan value plus any liquidation fee). In dYdX, liquidation can recover all the total

outstanding debt. The discount directly provides an economic incentive for liquidators to

engage in monitoring and liquidation because it implies profitable arbitrage opportunities.

We illustrate this process using a simplified example abstracting from liquidation fees or

transaction costs.

Example. Consider a lending protocol with a maximum LTV and a liquidation threshold of

75%. Suppose the initial price of ETH is 2800 USD. By depositing 1 ETH, the borrower can

take out a loan with a maximum value of 2100 USD. Suppose the borrower actually borrows

2000 USDC, which is worth 2000 USD. Suppose then the price of ETH drops by 10.7% to

2500 USD. The current LTV is 2000
2500

= 80% > 75%, which is above the liquidation threshold.

The loan then becomes under-collateralized, and the collateral is up for liquidation. Suppose

the protocol uses a 15% fixed-spread liquidation mechanism and allows all outstanding loans

to be recovered through liquidation. A liquidator can submit a transaction to repay 2000

USD by purchasing the collateral asset at a price of 2500
1+15%

= 2174 USD/ETH. Therefore, the

liquidator can obtain 2000
2174

= 0.92 ETH and sell it for 0.92 × 2500 = 2300 USD, making a

profit of 2300− 2000 = 300 USD.

When multiple potential liquidators are aware of a liquidation opportunity, the allocation

is based on a first-come, first-serve basis. The liquidator whose transaction is settled first

10The transaction fee is the only capital that a liquidator needs to provide out of their own pocket.
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realizes the liquidation profit. Therefore, potential liquidators have incentives to increase

the fees paid to settlement agents on the blockchain for settlement priority. This is known

as the gas premium.11 Settlement agents prioritize the completion of the transaction with

the highest fee.

Auction Liquidation MakerDAO’s collateral liquidation is the most well-known example

of an auction-based liquidation mechanism.12 In contrast with fixed-spread liquidation, the

individual who identifies the under-collateralized position in auctions is not necessarily the

one who performs the liquidation trade. Technically speaking, kicking off a liquidation

auction for an under-collateralized loan and bidding in that liquidation auction invokes two

separate functions from Maker’s liquidation module.13 The one who kicks off the auction

immediately receives a small financial reward. Once the auction begins, interested liquidators

submit their bids. The auction format was originally based on an English auction, and then

transitioned to a new descending auction format in April 2021.

The old format can be regarded as an English auction where bidders bid on the unit

price for the collateral. The bidder with the highest bid wins the auction and purchases

collateral at a unit price equal to the highest bid. But the quantity of collateral that the

winner can get depends on the total value of the collateral, calculated as the quantity of

collateral multiplied by the highest bid. If it is less than the debt value, the winning bidder

gets all the collateral. If it is more than the debt value, the winning bidder can purchase

just enough to pay back the debt. The rest of the collateral is returned to the borrower.14

There are three main criticisms of this auction format. First, bidding is costly because

every bid needs to be recorded on the blockchain even if it does not lead to a transaction,

requiring a non-negligible fee. Second, auctions takes time to conclude, leading to price

11Recently, transactions can also be settled through private networks such as the Flashboy relay. In this
case, traders can directly share profits with settlement agents in the form of private transfers Lehar and
Parlour (2023).

12Angle is another DeFi lending protocol that uses an auction-based liquidation mechanism.
13In principle, they can be performed by the same trader. In reality, the address for kick-off rewards is

most likely to be different from the address of the subsequent bidders, implying there are specialized bots
performing each function.

14In practice, this format is often referred to as a two-stage “tend-dent” English auction. The first stage
is called the “tend” phase, where bidders bid the amount of DAI they are willing to pay if they can obtain
the entire collateral. There are two possible outcomes of this phase. First, the highest bidder is willing to
pay only part of the debt. In this case, the auction ends and the highest bidder pays their bid and obtains
the entire collateral. Second, the highest bidder is willing to pay the full amount and the auction moves on
to the next stage. In the second stage (the “dent” phase), bidders compete by taking a smaller amount of
collateral while repaying the full amount of debt. Bidders essentially bid the unit price for the collateral,
and the bidder with the highest bid (that is, taking the least amount of collateral) wins the auction. The
auction terminates in this stage if there are no bids after the last bid within a certain time frame, or if the
total duration of the auction exceeds a certain threshold.
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risks. Third, these single-unit auctions may require bidders to have a large amount of DAI

to participate. Bidders cannot use flash loans to alleviate this problem because auctions

take time to conclude. The “Black Thursday” event for MakerDAO (12–13 March 2021)

demonstrates these shortcomings, when a single liquidator obtained $8.32 million in crypto

assets at no cost. This is possible when no other competitors participate in the tend phase.

This event prompted MakerDAO to switch to a descending multi-unit auction, which

works as follows. An auction starts with an initial asking price for the collateral that is

higher than the market price by a known percentage. The asking price goes down by 1%

every 90 seconds. At every asking price, bidders can submit the quantities they would like to

purchase. Once a bid is submitted, it is executed immediately. Then the system updates the

information on the remaining debt and collateral, broadcasts the information to everyone,

and the auction continues. It ends if the debt is fully recovered or the collateral is depleted

or a deadline is reached. In most cases, an auction ends with a full recovery of debt and

some remaining collateral is returned to the borrower. In relatively rare cases, an auction

ends with no remaining collateral, and the debt is not fully recovered. The Maker also

sets two conditions that will trigger a restart of the auction: (1) when the duration of the

auction exceeds a certain time frame, and (2) when the current market price changes too

much compared to the initial price.

Compared with the old format, the new auction format makes major improvements in

several aspects. First, every bid leads to a transaction, which lowers the bidding cost and

shortens the duration of the auction. Second, because a bid is executed immediately, flash

loans can be used, which relaxes the capital constraints. Finally, the lowest asking price can

be set by choosing the deadline of the auction to prevent the price from being too low.

Interestingly, although these are multi-unit auctions, 92% of them end up with only one

bidder paying all the debt.15 This is consistent with the fact that there is virtually no capital

constraint to bid, so the winner can take as much collateral as they can. Thus, it is similar

to the canonical Dutch auction with an indivisible good, which is equivalent to first-price

sealed-bid auctions. Therefore, we model this as a single-unit first-price sealed-bid auction.

3 Model

This section develops a parsimonious model that allows us to study the implications of

liquidation mechanisms. The model has two key components: (1) a crypto exchange modelled

as a competitive market that determines the market price of the cryptocurrency, and (2) a

set of DeFi loans with heterogeneous LTV. If a negative demand shock or a positive supply

15Based on bid-level data collected from May 2021 to May 2022.
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shock occurs, the market price of the cryptocurrency falls. It then triggers the liquidation

of DeFi loans, which in turn increases the supply of the cryptocurrency to the exchange and

further reduces the market price. This continues until a new equilibrium is reached. We

then study how the new equilibrium price of the cryptocurrency depends on the liquidation

mechanism (that is, the fixed-spread mechanism and the auction).

Suppose there is a cryptocurrency (for example, ETH) with a fixed supply of 1+α. There

is a continuum of buyers and a continuum of sellers, each having a unit measure. Each buyer

has no cryptocurrency but is interested in buying one unit. Each seller owns one unit of the

cryptocurrency. A buyer’s valuation for the cryptocurrency follows a distribution Fb with a

support [vb, v̄b] and a seller’s valuation follows Fs with a support [vs, v̄s]. They trade in an

exchange, which is a competitive market. A buyer is willing to buy if the market price p

is lower than their valuation. Therefore, the demand of cryptocurrency in the exchange is

D(p) = 1− Fb(p). Similarly, a seller is willing to sell if the market price is higher than their

valuation. Therefore, the supply of cryptocurrency from the sellers is S(p) = Fs(p).

Apart from the exchange, a measure of α cryptocurrencies is locked in a DeFi lending

protocol, with each unit serving as collateral for a loan.16 The protocol allows borrowing

of up to θp∗0, where θ < 1 is the maximum LTV and p∗0 is the equilibrium price of the

cryptocurrency in the exchange, satisfying S(p∗0) = D(p∗0). In the initial equilibrium, we

assume that the loan size, l, is heterogeneous and follows an exogenous distribution FL.
17

All loans are well-collateralized, with the largest loan size equal to θp∗0. This concludes the

characterization of the initial equilibrium.

To analyze how the two liquidation mechanisms may have different amplification effects

of an initial price shock, we engineer an unexpected negative shock to buyer valuations that

shifts Fb(·) to F̃b(·), with Fb(·) dominating F̃b(·) in the first-order stochastic sense. This

leads to a demand function D̃(p) that is lower than D(p) at every p, resulting in a drop in

the price and liquidations of DeFi loans. Let Q(p) be the quantity of liquidated collateral,

which depends on the price because more loans are liquidated if the price is lower. The

liquidated collateral is immediately supplied to the exchange and the resulting supply of the

cryptocurrency is S̃(p) = S(p) +Q(p). The new equilibrium price solves D̃(p) = S̃(p). The

liquidation mechanism affects the new equilibrium p̃∗ by affecting Q(p), which is the focus of

the rest of this section. We then compare the new equilibrium price under the fixed-spread

mechanism (p∗f ) and the auction mechanism (p∗a) with p∗0. If one mechanism leads to a higher

price drop, we conclude that it amplifies the negative shock. It is worth noting that although

we focus on a negative demand shock, the analysis applies to other shocks that lower the

16The collateral is held by the lending protocol and not available for lending.
17We assume these loans are not used for purchasing the asset.
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equilibrium price.

3.1 Supply from Loan Liquidations

For any market price p, a loan larger than θp is eligible for liquidation.18 A continuum of

potential liquidators play a two-stage game. In the first stage, they decide whether or not

to participate in liquidations of loans of size l, trading off the expected profit with the fixed

cost of participation C, which is also referred to as the entry cost. If a liquidator decides

to participate, they actively search for a liquidation event. Active liquidators are randomly

matched with liquidation events such that the number of liquidators n in a liquidation event

of a loan with size l follows a Poisson distribution:

Pr(n = k) = µ(k; ηl) =
ηkl e

−ηl

k!
for k = 0, 1, 2, · · · , (1)

where λl denote the density of participating liquidators given loan size l and ηl = λl/fL(l)

is the liquidator-to-liquidation event ratio.

In the second stage, liquidators matched to the same liquidation event compete for the

collateral. The liquidation mechanism determines how they compete. In a fixed-spread liq-

uidation mechanism, liquidators compete for transaction priority by bidding on the “tips”

paid to settlement agents.19 The liquidator offering the highest tip has the highest settlement

priority and thus wins the liquidation. In an auction-based liquidation mechanism, liquida-

tors compete by bidding higher liquidation prices. Therefore, liquidator competition benefits

miners under the fixed-spread mechanism, whereas under auctions, the benefits accrue to

DeFi borrowers.

We use backward induction to solve this two-stage game under the two different mecha-

nisms. This gives us the expected quantity of liquidated collateral from a loan of size l when

the market price is p, denoted as q(p, l). Integrating over all liquidable loans (that is, loans

with a size between θp and θp∗0), we obtain the expected quantity of liquidated collateral:

Q(p) = α

∫ θp∗0

θp

q(p, l)dFL(l). (2)

18Here, we assume that the maximum LTV at origination and the liquidation threshold are the same;
however in practice, there might be a small difference. For example, the maximum LTV in Aave is 75%,
while the liquidation threshold is 80%. In Compound, it is 82.5% vs. 90%. MakerDAO has the same value
for the maximum LTV and the liquidation threshold.

19In Ethereum, the total transaction cost = gas unit (limits) × (base fee + tip). For simplicity, we assume
that all liquidation trades use the same gas unit, which is normalized to 1. The base fee is part of the fixed
participation cost. Tips, also known as priority fees, are an additional payment to Ethereum miners to
encourage a faster settlement.
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We next present details on solving for q(p, l) and characterize the equilibrium under two

alternative assumptions on the liquidation mechanism. To facilitate comparison, we use

subscripts f and a to denote quantities under the fixed-spread mechanism and the auction

mechanism, respectively, from this point on.

Fixed-Spread Liquidation

In a fixed-spread liquidation model, the collateral asset of an eligible loan can be purchased

at a predetermined discount from the market price, denoted by γ. Then, at p < p∗0, the

profit from liquidating a loan of size l absent from the transaction cost is:

πf (γp, l) = min

{
l

γp
, 1

}
(p− γpR). (3)

Here, min{l/γp, 1} is the quantity of liquidated collateral. If γp > l, the total value of the

collateral exceeds that of the loan, which occurs if the price is sufficiently high. In this case,

a quantity of l/γp collateral is sold to the liquidator, which generates just enough revenue

to repay the debt (partial liquidation). If γp < l, the entire 1 unit of collateral is liquidated,

even though it is still not enough to repay the debt (complete liquidation).

For each unit of collateral obtained, the liquidator gets p− γpR, where p is the revenue

obtained from selling the collateral in the exchange and γpR is the liquidation cost. It equals

the total payment at the liquidation γp multiplied by R = 1+ r, where r is the funding cost.

Since the liquidator uses flash loans to obtain the funding, r can be regarded as the interest

rate on the flash loan. We focus on the case where γR < 1.20

In the second stage, matched liquidators compete for the collateral by bidding on tips

via a first-price sealed-bid auction. A liquidator does not know the number of competitors,

but knows the distribution of the number of matched liquidators. A liquidator then chooses

the tip t to maximizes the expected profit:

Πf (p, l; ηl) = max
t

Em

{
[πf (γp, l)− t]

m∏
j=1

Pr (t > tj)

}
(4)

where m is the number of competitors and
∏m

j=1 Pr (t > tj) is the winning probability of

liquidator i. Because n follows a Poisson distribution ηl, m also follows the same Poisson

distribution by the property of a Poisson game with population uncertainty (Myerson, 1998).

Therefore, the expected profit implicitly depends on ηl. This problem is closely related to

20In practice, R ranges from 1 to 1.003. On the lower end, dYdX does not charge any interest rate for a
flash-loan-like function. On the higher end, Uniswap V2 charges the highest interest rate (0.3%) based on
users’ borrowed assets (Wang et al., 2021). The fixed discount ranges from 5% to 15%.
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Burdett and Judd (1983) and the following lemma holds.

Lemma 1. If ηl ∈ (0,∞), the bidding game has a unique equilibrium that features a

mixed strategy. A liquidator’s bid follows a distribution H supported on [0, t̄], where t̄ =

πf (γp, l) (1− e−ηl) and

H(t) =
1

ηl
[log πf (γp, l)− log (πf (γp, l)− t)] . (5)

Proof. See Appendix A.

We now outline the proof of this lemma. First, following the argument of Burdett and

Judd (1983), liquidators use mixed strategies in the unique equilibrium and all the strategies

used in equilibrium yield the same expected pay-off. Because the liquidator who bids the

lowest t can win only if no other liquidator is matched with the liquidation, the lowest bid

is 0. Otherwise, the liquidator with the lowest bid can obtain a higher profit by deviating to

0. Therefore, the lower bound of the support of H is t = 0. At t = t, the expected pay-off is

µ(0; ηl)πf (γp, l). If a liquidator bids t ∈ (0, t̄], they can win even if other liquidators arrive.

The liquidator faces m competitors with probability µ(m; ηl). In this case, they win only if

all the m competitors bid less than t, which occurs with probability H(t)m. Because m can

range from 0 to ∞, the expected profit is
∑∞

m=0 µ(m; ηl) [πf (γp, l)− t]H(t)m. We can then

equate it with the profit under t = 0 to obtain an equation in H(t):

∞∑
m=0

µ(m; ηl) [πf (γp, l)− t]H(t)m = µ(0; ηl) [πf (γp, l)− t] . (6)

This equation uniquely determines H(t) for each t, and t̄ follows from H(t̄) = 1.

It is worth noting that the highest tip, t̄, is a fraction (1− e−ηl) of the total liquidation

profit, resembling a profit-sharing regime. This profit share increases with the level of com-

petition, as measured by ηl. More liquidators lead to high profits to the settlement agent;

that is, competition leads to higher rent extracted by the settlement agent, as opposed to

reducing the amount of collateral liquidated.

Now consider the first stage of the game. Because of the equi-profit condition,

Πf (p, l; ηl) = µ(0; ηl)πf (γp, l) = e−ηlπf (γp, l). (7)

Then by free-entry condition, the equilibrium liquidator-to-liquidation-event ratio under

price p and loan size l, η∗f (p, l), satisfies

e−η∗f (p,l)πf (γp, l) = C. (8)
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This equation has a finite solution if and only if πf (γp, l) > C. Otherwise, η∗f (p, l) = ∞ and

liquidators do not participate. This occurs if p and/or l are too low, or C is too high.

Proposition 1. If πf (γp, l) ≤ C, there is no successful liquidation. If πf (γp, l) > C, the

liquidator-to-liquidation event ratio for loans with size l is

η∗f (p, l) = log πf (γp, l)− logC. (9)

Moreover, t̄ = πf (γp, l)− C and

H(t) =
log πf (γp, l)− log (πf (γp, l)− t)

log πf (γp, l)− logC
. (10)

Proof. See Appendix A.

Supply from Liquidation Proposition 1 allows us to calculate Q(p) under the fixed-

spread mechanism, denoted as Qf (p). Given p, the expected quantity of liquidated collateral

from a loan of size l is

qf (p, l) =
[
1− µ(0; η∗f (p, l))

]
min

{
l

γp
, 1

}
, (11)

where 1−µ(0; η∗f (p, l)) = 1−e−η∗f (p,l) is the probability of liquidation (that is, the probability

that at least one liquidator is matched with the liquidation event), and min {l/γp, 1} is the

liquidated quantity of collateral conditional on liquidation. If πf (γp, l) > C, (8) implies

e−η∗f (p,l) = C/πf (γp, l). Using this observation, we can write

qf (p, l) =

{
0 if πf (γp, l) ≤ C

min
{

l
γp
, 1
}
− C

(1−γR)p
if πf (γp, l) > C

. (12)

After some algebra, we can show that if p < C/(1 − γR), revenue from a full liquidation

is not sufficient to cover the participation cost. Therefore, no liquidator participates and

qf (p, l) = 0 regardless of l. If p > C/(1− γR), then

qf (p, l) =


0 if (1− γR) l

γ
≤ C

l
γp

− C
(1−γR)p

if C < (1− γR) l
γ
< (1− γR)p

1− C
(1−γR)p

if γp ≤ l

. (13)
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Figure 1: qf and qa

We then obtain Qf (p) =
∫ θp∗0
θp

qf (p, l)dFl(l) for any Fl.

Figure 1a plots qf (p, l) as a function of l for a given p in red if p > C/(1−γR). It is 0 if l is

sufficiently low and is constant if l is sufficiently high. If l is low, liquidating a small amount

of collateral is sufficient to pay back the loan. This implies a low revenue from liquidation,

which is not sufficient to cover the participation cost. Therefore, no one participates in the

liquidation and qf (p, l) is 0. If l is sufficiently high, all collateral will be liquidated and the

revenue is independent of the loan size. Therefore, the liquidation quantity and participation

do not depend on the loan size. If l is intermediate, the amount of liquidated collateral and

the liquidation revenue both increase with l. Therefore, qf (p, l) increases with l.

The red curve in Figure 1b shows qf (p, l) as a function of p given the value of l. It is non-

monotone in general. Intuitively, a higher p has two effects. On the one hand, it increases the

revenue from liquidation. This induces more participation and a more successful liquidation

event (extensive margin). On the other hand, it decreases the amount of liquidated collateral

needed to pay back the loans within a liquidation (intensive margin). The former effect

increases qf (p, l), while the latter effect decreases it. If p is low, all collateral are liquidated

in a successful liquidation and then the extensive margin dominates. If p is high, the intensive

margin dominates.

Auctions

We next study the case where the collateral is liquidated via a first-price sealed-bid auction

with reservation price δp. In the second stage, liquidators bid on the price per unit of the

collateral, with the highest bid winning the auction. In contrast with a standard first-price

auction, the total revenue in this case is capped by the loan size, as the liquidation cannot

17



raise more than the amount of the underlying debt. Specifically, if the winning liquidator

bids b < l, they pay l in exchange for l/b < 1 units of collateral. Otherwise, the liquidator

pays b and gets 1 unit of the collateral (that is, the total available amount). A liquidator’s

profit upon winning is

πa(b, l) = min

{
l

b
, 1

}
(p− bR) . (14)

The liquidator chooses b to maximize the expected profit:

max
b≥δp

Em

[
πa(b, l)

m∏
j=1

Pr (b > bj)
∣∣∣ηl]. (15)

Similar to (4), the bidder trades off the profit conditional on winning and the probability

of winning. The difference is that the bid affects the quantity of collateral obtained from

the liquidation in an auction but not in a fixed-spread liquidation. We can show that in the

equilibrium, a range of bids are used and they all yield the same profit. Let G(b) be the

equilibrium bid distribution, which is again determined by an equal-profit condition. Given

ηl, it satisfies the following equal-profit condition:

e−ηlπa(δp, l) = πa(δp, l)
∞∑
n=0

ηnl e
−ηl

n!
G(b)n (16)

Then the following result holds.

Lemma 2. Given ηl ∈ (0,∞), the unique equilibrium features mixed strategy. A liquidator’s

bid follows a distribution G supported on [δp, b̄], where πa(b̄, l) = e−ηlπa(δp, l) and

G(b) =
1

ηl
[log πa(δp, l)− log πa(b, l)] . (17)

Proof. See Appendix A.

Note that under both mechanisms, the ratio of the lowest realized profit to the highest

realized profit (πa(b̄, l)/πa(δp, l) in auction and (πf (γp, l) − t̄)/πf (γp, l) in fixed spread) is

e−ηl , which decreases with ηl. Intuitively, a higher liquidator-to-eligible-loan ratio results in

more competition, which depresses the winning profit.

Similarly, the participation decision in the first stage of the game determines the liquidator-

to-eligible-loan ratio through the free-entry condition and the results are summarized in the

following proposition:
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Proposition 2. If πa(δp, l) ≤ C, there is no successful liquidation. Otherwise, the equilib-

rium the liquidator-to-eligible-loan ratio is given by

η∗a(p, l) = log πa(δp, l)− logC (18)

and the bids follow the distribution G supported on [δp, b̄], where πa(b̄, l) = C and

G(b) =
log πa(δp, l)− log πa(b, l)

log πa(δp, l)− logC
. (19)

Proof. See Appendix A.

Supply from liquidation If a liquidation is successful, the amount of liquidated collateral

is determined by the highest bid, which has a distribution of

G∗(b) =
1

1− e−η∗a(p,l)

∞∑
n=1

η∗a(p, l)
ne−η∗a(p,l)

n!
G(b)n.

The expected amount of collateral liquidated for loan l is

qa(p, l) = [1− µ(0; η∗a(p, l))]

∫ b̄

δp

min {l/b, 1} dG∗(b), (20)

where 1 − µ(0; η∗a(p, l)) = 1 − e−η∗a(p,l) is the probability of a successful liquidation, and∫ b̄

δp
min {l/b, 1} dG∗(b) is the expected liquidated quantity in a successful liquidation. We

next derive the closed-form expression for qa(p, l). If η
∗
a(p, l) ∈ (0,∞),

G∗(b) =
e−η∗a(p,l)πa(δp, l)

[1− e−η∗a(p,l)] πa(b, l)
=

C

[1− e−η∗a(p,l)] πa(b, l)
, (21)

where the first equality follows from (16) and the second equality uses (18). We can combine

(20) and (21), and integrate with respect to b to obtain a closed-form expression for qa(p, l).

We again distinguish two cases. First, if (1 − δR)p ≤ C, then qa(p, l) = 0. In this

case, the price of the collateral is too low such that the revenue from liquidation cannot

cover the participation cost even if all the collateral is liquidated. As a result, no liquidator
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participates. Second if (1− δR)p > C, then

qa (p, l) =



0 if l < δC
1−δR

C+Rl
p

− C
p(1−δR)

+ C
p
log (1−δR)l

δC
if δp > l > δC

1−δR

C+Rl
p

− C
p(1−δR)

+ C
p
log p−Rl

C
if δp < l < p−C

R

1− C
p(1−δR)

if p−C
R

< l

. (22)

In this case, liquidators participate unless the size is too low. We can then compute Qa(p) =∫ θp∗0
θp

qa(p, l)dFl(l) for any distribution Fl.

The blue curves in Figure 1 show qa(p, l) as functions of l and p, respectively. Similar to

qf (p, l), qa(p, l) is increasing in l and non-monotone in p. Interestingly, it may be lower or

higher than qf (p, l) in this example. In particular, qa(p, l) is higher than qf (p, l) if p is lower,

and is lower than qf (p, l) if p is high. Intuitively, a high p makes liquidations attractive,

which induces more competition. Higher competition increases prices in auctions, but has

no effect on prices in fixed-spread liquidations. As a result, less collateral is liquidated in

auctions than in fixed-spread liquidations.

4 Mechanism Comparison

We now compare the amplification effect of a negative demand shock under the two mecha-

nisms. First, notice because πa(δp, l) < πf (γp, l) if and only if δ > γ, Propositions 1 and 2

imply that η∗a(p, l) < η∗f (p, l) if and only if δ > γ for any p and l; that is, on the extensive

margin, an eligible loan is less likely to be liquidated under auctions than under a fixed-

spread mechanism if and only if δ > γ. On the intensive margin, auctions lead to higher

liquidation prices than fixed-spread liquidations if δ > γ because the reserve price reservation

price is higher than the fixed-spread liquidation price. Higher prices lead to less liquidated

collateral. As a result, a smaller supply of cryptocurrency is added to the market in auctions

than in fixed-spread liquidations if δ ≥ γ.

Proposition 3. If δ ≥ γ, Qa(p) ≤ Qf (p) for all p < p∗0, which implies p∗a ≥ p∗f .

We next analyze the more interesting and realistic case with δ < γ. Now there are two

offsetting effects. On the one hand, more liquidators participate in auctions than in fixed-

spread liquidations, as a low reservation price implies a high potential profit. This increases

the number of loans liquidated. We refer to this effect as the entry effect. Conversely, a

larger number of participants lead to more competition in auctions, which drives up the
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transaction price and reduces the amount of liquidated collateral per liquidation event. We

refer to this as the competition effect.

The entry effect results in a higher supply from liquidations under the auction mecha-

nism than under the fixed-spread mechanism, while the competition effect has the opposite

implication. The comparison depends on which effect dominates. Our next result shows that

for a given (p, l), which effect dominates depends on the entry cost C.

Lemma 3. Suppose δ < γ < R−1. For any positive p and l, the following holds:

1. If Rl < p, there exists a cut-off > C ∈ (0,min {p, l/γ} −Rl) such that the expected

quantity of liquidated collateral is lower under the auction mechanism than under the

fixed-spread mechanism if and only if C < C∗
p,l.

2. If Rl > p, the expected amount of liquidated collateral is weakly higher under the auction

mechanism than under the fixed-spread mechanism for all C ≥ 0.

This lemma shows that for a given p-l pair, there are two possibilities. First, if the the

market price is too low, fixed spread leads to a weakly lower liquidation quantity. In this

case, liquidation is not profitable under fixed spread due to the pre-specified discount but

can still be profitable under auctions. Then the entry effect dominates and auctions lead to

more liquidation. Second, if the market price is sufficiently high, auctions can lead to less

liquidated collateral than fixed spread. This happens if and only if the entry cost is lower

than a threshold, resulting in the prevalence of the competition effect.

Proposition 4. Suppose v = min{vs, vb} is positive. If δ < γ < R−1 and f (l) > 0 on

(0, θp∗), then there exists two cut-offs 0 < C ≤ C < ∞ such that

1. If C < C, Qa (p) < Qf (p) for all p ≥ min {vs, vb}.

2. If C > C, Qa (p) > Qf (p) for all p ≥ min {vs, vb}.

3. If C ∈
(
C,C

)
,Qa (p) < Qf (p) only if p is not too small.

This proposition is a consequence of Lemma 3. It shows that if the participation cost is

low, the auction mechanism leads to less added supply of cryptocurrency from liquidations

than the fixed-spread mechanism, regardless of the current price. If the participation cost is

high, the reverse is true. And if the participation cost is in an intermediate range, auctions

can lead to less added supply from liquidations only if the current price is not too low.

Intuitively, if the participation cost is low, the probability of successful liquidations is

close to 1 under both mechanisms. The difference in liquidation quantity mainly results
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from the amount of liquidated collateral in each successful liquidation event. Then, the auc-

tion mechanism leads to less liquidated collateral because the competition effect drives up

liquidation price and lowers the liquidated quantity. If the participation cost is sufficiently

high, it exceeds the profit under fixed-spread mechanism, which is no more than a predeter-

mined fraction of the market price. In this case, liquidators do not participate in fixed-spread

liquidations. They may, however, still participate in auctions because they can significantly

lower their bids to obtain sufficient profit to cover the participation cost. Therefore, auctions

lead to more liquidated collateral than the fixed-spread mechanism does. If the participation

cost is in an intermediate range, the probability of a successful liquidation is close to 1 only

if the market price is sufficiently high. Only in this case, the auction mechanism may lead

to less liquidated collateral because of the competition effect.

Proposition 4 implies that the supply function under the auction mechanism, S̃a(p), is

lower than that under the fixed-spread mechanism, S̃f (p) for all p ∈ [v, p∗0) if the participation

cost is sufficiently low. The reverse is true if the participation cost is sufficiently high. And

if the participation cost is in an intermediate range, S̃a(p) < S̃f (p) only if p is not too small.

This ranking in the supply function immediately implies the ranking of the amplification

effect of a negative shock, which we illustrate through a numerical example.

Numerical Example

We set γ = 0.9 and δ = 0.6 based on the fixed discount and reservation price commonly

observed in DeFi. The original demand and supply is given by D(p) = 1− (p− 0.1)/3 and

S(p) = (p − 0.1)/3, which implies Fb(p) = Fs(p) = (p − 0.1)/3, p ∈ [0.1, 3.1]. The original

equilibrium price is therefore p∗ = 1.6. The negative demand shock changes the demand

function to D̃(p) = 0.8 − p/3. Other parameters are set as follows: θ = 2/3, R = 1.01,

α = 0.4 and l ∼ U [0.1, 1].

Case (a): Low entry cost If the entry cost is as low as C = 10−5, Figure 2a illustrates the

impact of a negative demand shock. The horizontal axis is the price of the cryptocurrency

and the vertical axis is the quantity. Before the shock hits, the equilibrium price is p∗0, which

is the intersection of the demand curve before the shock (dashed grey curve) and the supply.

The blue and the red curves are the supply function under the fixed-spread mechanism and

the auction mechanism, respectively. The blue curve is above the red curve for all p in the

relevant range, implying that if the participation cost is low, auctions lead to a lower supply

of cryptocurrency than the fixed-spread mechanism. As a result, the new equilibrium price

under auctions is p∗a, which is higher than that under the fixed-spread mechanism, p∗f . For

reference, p∗1 is the new equilibrium price if there are no liquidations. It is higher than p∗a
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(b) High entry cost

Figure 2: Market outcomes with high and low entry costs

Figure 2a and 2b show the equilibrium market outcomes when the entry cost is low (C = 10−5) and high
(C = 10−2), respectively. In both figures, p∗0 represents the initial equilibrium price before the demand shock,
and p∗1, p

∗
a, and p∗f denote the new equilibrium price after the demand shock in the case of no liquidation,

auction liquidations, and fixed-spread liquidations, respectively.
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(a) Small shock
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(b) Large shock

Figure 3: Market outcomes with medium entry costs and different demand shocks

Figure 3a and 3b show the equilibrium market outcomes at an intermediate value of the entry cost (C = 10−3)
in response to a small and large demand shock, respectively. The small demand shock refers to a shift in
demand function from D(p) = 1−(p−0.1)/3 to D̃(p) = 0.8−(p−0.1)/3 and a large demand shock represents
the case when D̃(p) = 0.55− (p− 0.1)/3.
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and p∗f , implying that liquidations amplify negative demand shocks. In this example, the

price drop is 2% higher under the fixed-spread mechanism than under auctions.

Case (b): High entry cost Figure 2b shows the case with C = 10−2, which is high

under this parametrization. In all p < p∗0, the auction mechanism leads to a higher supply of

cryptocurrency than the fixed-spread mechanism. The auction mechanism leads to a price

drop about 1.1% larger than the fixed-spread mechanism.

Case (c): Medium entry cost If the participation cost is intermediate at C = 10−3,

Figures 3a and 3b illustrate the cases with a small and a big negative demand shock, respec-

tively. The small demand shock moves the demand to D̃(p) = 0.8 − (p − 0.1)/3 (as in the

previous cases), while the large shock moves the demand to D̃(p) = 0.55− p/3. Consistent

with the theory, the auction mechanism leads to a lower supply only if p is sufficiently large,

where participation is sufficiently high. Therefore, the ranking of the amplification effect

depends on the size of the shock. If the shock is small, the new demand intersects with the

supply in a region where auctions lead to lower supply than the fixed-spread mechanism, as

in Figure 3a. Then, auctions lead to a higher price than the fixed-spread mechanism. With

a large demand shock, the reverse is true, as shown in 3b. The new equilibrium price falls

into the region where the auctions lead to more supply than the fixed-spread mechanism

because the former leads to more participation than the latter.

Corollary 1. Suppose v = min{vs, vb} is positive. If δ < γ < R−1 and f (l) > 0 on (0, θp∗),

then there exit two cut-offs 0 < C ≤ C < ∞ such that:

1. If C < C, auctions amplify negative demand shocks less than the fixed-spread mecha-

nism.

2. If C > C, auctions amplify negative demand shocks more than the fixed-spread mech-

anism.

3. If C ∈
(
C,C

)
,auctions amplify negative demand shocks less than the fixed-spread mech-

anism only if the shock is not too big.

So far, we have focused on the case where all loans use the same liquidation mechanism.

In practice, loans can use different liquidation mechanisms. It is therefore interesting to study

how the composition of liquidation mechanisms impacts the amplification effect. Suppose

a λ fraction of loans use auctions as the liquidation mechanism and the rest use the fixed-

spread mechanism. Then we can express the total supply with liquidation as S̃(p) = S(p) +

λQa(p)+ (1−λ)Qf (p). Following the same argument as above, we have the following result,
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which shows how an increase in the share of auction liquidations affects the amplification

effect. It is useful for our empirical analysis in Section 5.

Corollary 2. Suppose v = min{vs, vb} is positive and the loan size distribution is the same

under different liquidation mechanisms. If δ < γ < R−1 and f (l) > 0 on (0, θp∗), then two

cut-offs exist 0 < C ≤ C < ∞ such that:

1. If C < C, a higher share of auction liquidations reduces the amplification effect of a

negative demand shock.

2. If C > C, a higher share of auction liquidations increases the amplification effect of a

negative demand shock.

3. If C ∈
(
C,C

)
,a higher share of auction liquidations reduces the amplification effect of

a negative demand shock only if the shock is not too big.

Notice that all the results in this section deal with a negative demand shock. The results

also carry over to a positive supply shock where the valuations of the sellers become lower

or where the total quantity of the cryptocurrency increases.

5 Empirical Analysis

This section empirically examines the relationship between liquidation mechanism and its

price impact. We focus on the Ethereum blockchain, which hosts by far the largest DeFi

ecosystem. Using transaction-level blockchain data, we identify the price change associated

with each single liquidation and examine the relationship between the liquidation mechanism

and the magnitude of price changes.

5.1 Sample Construction

We retrieve on-chain data from Dune Analytics and collect collateral liquidation transactions

that occur between 2021/04/26–2024/05/26 on Aave and Maker, focusing on the set of

cryptocurrencies that are accepted as collateral by all three platforms.21 Aave is the leading

21Dune Analytics is a blockchain data platform with publicly available query functionality. Dune’s core
dataset comes directly from blockchain data. The platform structures the raw on-chain data into a queryable
form. Despite the open data approach, Dune’s platform itself is proprietary. Other empirical work using
Dune Analytics includes Azar et al. (2024).
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platform that uses a fixed-spread liquidation mechanism, while Maker liquidation is auction-

based. Together they account for the majority of liquidations on Ethereum.22

For each liquidation transaction, we use the following approach to identify the change

in the market price of the affected collateral before and after the liquidation. Given the

liquidation i, let ai indicate the type of cryptocurrency sold as collateral. We first identify

the last DEX trade involving the sale of ai prior to liquidation i within the same block and

infer the price of ai from this swap, denoted as p0i . We then find the first swap trade selling

ai after liquidation i in the same block and record the implied price as p1i .
23 We require that

the two trades occur on the same DEX. We then calculate the price change from p0i to p1i as

∆pi = (p1i − p0i )/p
0
i × 100%.

This approach identifies price changes for 12, 806 liquidations (47.3% of all liquidations

from Aave and Maker). Liquidation transactions for which we cannot identify price changes

are mostly backed by unpopular cryptocurrencies that are traded less often. Among the

identified liquidations, three types of collateral cover 98% of the observations: Wrapped

Ether (90%), Wrapped Bitcoin (4%), and Link (4%).24 We refer to Wrapped Ether as ETH

for short hereafter. For cleaner identification, we include only ETH-backed liquidations for

the regression analysis, although results are robust to the inclusion of wrapped Bitcoin and

Link. In addition, we focus on Aave liquidations with stablecoins as debt tokens, which

accounts for 95% of the observations. This avoids fluctuations in the values of risky debt

tokens affecting our results.25

Liquidations are heavily concentrated on days that are marked by negative news.26 Two-

thirds of the liquidations in the sample occur on days with at least seven other liquidation

events from both Aave and Maker. We keep these observations for our regression analysis

since our identification strategy relies on within-day variations in price impacts between Aave

and Maker liquidations.

On days marked by cascading liquidations, these events tend to happen in rapid waves,

22We exclude Compound in the sample because the quantity of liquidated collateral on Compound is not
accurate in Dune. This does not materially impact our sample coverage since the number of Compound
liquidations is small (3, 894), compared to 27, 072 from Aave and Maker combined.

23The price is determined by dividing the dollar amount of the swap trade, measured by the value of the
asset purchased, by the quantity of the asset sold (ai).

24Cryptos that are not native to the Ethereum blockchain (e.g., Bitcoin) or are not a token (e.g., Ether)
are wrapped so that smart contracts can handle them using a standard token interface, called ERC-20.

25We winsorize the price change and drop a few observations with abnormal values for the collateral
amount, since extreme values are likely influenced by other transactions unrelated to liquidations.

26For example, June 13, 2022, witnessed the largest number of liquidation events in our sample. This
spike was likely triggered by heightened expectations of a rate hike following an unexpected surge in inflation,
as indicated by the CPI report released the preceding Friday. On that day, the U.S. stock market officially
entered a bear market, and the highly correlated crypto market experienced significant losses. Bitcoin
endured its largest price drop since 2011 in a broad sell-off, forcing lenders like Celsius to halt withdrawals.
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with only seconds separating them. The size and duration of these waves, as well as the

specific position of a liquidation within a wave, can affect the associated price impacts, as

documented in Lehar and Parlour (2022). Here, we define liquidations of a given collateral

to be part of the same wave if their occurrences are less than one minute apart. Notably,

98% of the waves involving multiple liquidations are exclusive to either Aave or Maker.

To ensure accurate estimation of the differential price impacts between Aave and Maker,

we focus our analysis on these homogeneous waves, excluding the mixed wave that might

introduce confounding spillover effects between the two types of liquidations.

5.2 Variable Definition and Summary Statistics

Table 1: Summary Statistics

Aave Maker
Total

(Fixed-spread) (Auction)
Pre-Liquidation Price p0($) 1938.9 1981.7 1943.1

(677.1) (672.0) (676.6)

Price Change ∆p (%) -0.0581 -0.0124 -0.0536
(0.361) (0.355) (0.360)

Liquidation Discount (%) 5 1.834 4.690
– (2.389) (1.201)

Liquidation Revenue (k) 39.28 145.4 49.67
(185.0) (488.2) (234.8)

Wave Length (min) 1.312 1.160 1.297
(1.669) (1.396) (1.645)

Wave Size 14.46 11.72 14.19
(17.65) (10.96) (17.13)

Observations 7060

This table presents the mean and standard deviation (in parentheses) for the variables of interest, grouped
by protocol. The sample period is 2021/04/26–2024/05/26. Price change ∆pi is the percentage change in
the collateral price before and after liquidation i. Collateral value (in thousands USD) is calculated as the
amount of collateral liquidated times the price of the collateral before the liquidation (p0i ). Wave length (in
minutes) is defined as the time elapsed from the first liquidation to the last liquidation in the wave. Wave
size is the total number of liquidations in the wave.

Table 1 presents the summary statistics of the key variables. The pre-liquidation price

(p0) of ETH has a mean of $1,943, since most of the liquidations in our sample occur during
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the downturn of ETH around June 2022 and May–June 2021. The difference in p0 across Aave

and Maker is not statistically significant, which assures the similarity in market conditions

for the two types of liquidations.

The average price change (∆p) has the expected sign (negative), with an unconditional

mean of −0.053%. In terms of magnitude, the average price change associated with Aave

liquidations is larger than Maker liquidations, and the difference in means is statistically

significant.

Aave’s liquidation discounts are system-wide parameters determined by its governance

DAO, varying with different types of collateral. These parameters can vary over time with

discrete changes. For ETH, however, the liquidation discount is fixed at 5% throughout our

sample. For Maker liquidations, we infer the liquidation discount by (p0i − pli)/p
0
i × 100%

(that is, the percentage reduction in the liquidation price, denoted as pli, compared to the

pre-liquidation market price). Here pli is directly observed, as it is the price at which a

liquidator places a bid and purchases the collateral. Maker’s liquidation has an average

liquidation discount of 1.83%, which is significantly lower than Aave’s fixed discount. This

is consistent with the competition effect in our model, which predicts a higher liquidation

price and lower liquidation discount for the auction format.

The two protocols, however, differ significantly in the size of liquidations. Here we cal-

culate the liquidation revenue as the product of the liquidated quantity of collateral and the

liquidation price.27 For Aave, the liquidation revenue is at most 50% of the borrowed amount

due to Aave’s liquidation rule, with a mean revenue of $39.28K per liquidation. For Maker,

the liquidation revenue covers the amount borrowed in most cases, and the mean revenue is

significantly higher, at $145.4K. Overall, Maker accounts for 29% of all liquidation revenues,

while accounting for 10% of liquidations.

To capture the duration and magnitude of liquidation waves, we measure wave length as

the time difference between the first and last liquidation within a wave, and wave size as the

total number of liquidations in the wave. On average, liquidations occur in waves that last

about one minute with a dozen other liquidations. Aave waves are slightly larger than Maker

waves, which aligns with the overall higher frequency of Aave liquidations in the sample.

5.3 Regression Analysis

Although the mean comparison from Table 1 suggests a smaller negative price impact for the

auction mechanism, other confounding factors are at play, such as the size of the liquidation,

the market condition, the initial shock that triggers the liquidation wave, and the character-

27For Aave, we infer the liquidation price by pli = p0i × (1− discount/100%).

29



istics of the wave. To control for these factors, we use the following regression equation to

estimate the effect of liquidation mechanism:

∆pi = α + βAuctioni + γX ′
i + δt + µd + ηb + ϵ, (23)

where Auction = 1 if and only if it is a Maker liquidation and the control variable Xi

includes the liquidation revenue, the pre-liquidation price (p0), the length and size of the

wave, and i’s position in the wave. The liquidation revenue, which is essentially repayment

for the borrowed amount, controls for the size of the liquidation. In other words, we compare

liquidations that generate the same amount of repayments. The pre-liquidation price controls

for the market condition, and the wave characteristics account for any cumulative impact of

cascading liquidations that occur in a short time.

There are three sets of fixed effects. First, δt is the date fixed effect, which is used to

control for the common shock that triggers the liquidation. Second, µd is the DEX fixed

effect, where d indicates the DEX on which the two swap trades used to determine p0i and p1i

occur.28 This encompasses factors that influence the pricing of the collateral cryptocurrency

on a specific DEX. Finally, ηb is the debt-token fixed effect, with b indicating the borrowed

token (for example, DAI, USDC, etc). This controls for any changes in conditions that are

specific to the borrowed token.

We can therefore interpret the key parameter, β, as the difference in ∆p between an

auction and fixed-spread ETH liquidation that repays the same amount of debt with a

similar market condition, as part of similar liquidation waves on the same day.

Table 2 presents regression results. Column (1) shows the baseline result of regression

equation (23) without adding control variableX. Column (2) includes the liquidation revenue

and pre-liquidation price. Column (3) further adds the length and size of the wave and the

liquidation’s position in the wave. The coefficient on Auction is positive and significant in

all three columns, with a point estimate of 0.055% in the last specification. Given our mean

∆p at −0.058% for Aave liquidations, our estimate suggests that the auction mechanism is

associated with a price change of −0.008%, implying a significant dampening effect of the

negative price impact. Coefficients for liquidation revenue have a negative sign as expected,

suggesting that larger liquidations are associated with larger negative price impacts. The

length and the size of the wave have opposing effects, while a liquidation’s position in a wave

does not have a significant effect.

Our regression result suggests that the auction mechanism ameliorates the price impact of

liquidations. According to our theory, this is due to a dominating competition effect, which

28In our robustness check where multiple types collateral are included in the sample, we modify this term
to reflect the collateral-DEX fixed effect.
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Table 2: The effect of liquidation mechanism on price changes

Dependent Variable: Price change ∆p (%)
(1) (2) (3)

Auction 0.0435∗∗∗ 0.0561∗∗∗ 0.0554∗∗∗

(7.65) (5.69) (5.85)

Liquidation Revenue ($K) -0.000137∗∗ -0.000132∗∗

(-4.48) (-4.31)

Pre-Liquidation Price ($) -0.000254∗∗ -0.000264∗∗

(-3.94) (-4.02)

Wave Length (min) -0.0246∗∗∗

(-13.85)

Wave Size 0.00223∗∗∗

(8.56)

Position in Wave 0.0000734
(0.11)

Date FE Y Y Y

DEX FE Y Y Y

Debt Token FE Y Y Y
Observations 7060 7060 7060
R2 0.029 0.040 0.044

This table shows estimated results of regression equation (23). The estimation sample consists of liquidations
that belong to either a pure auction wave or a pure non-auction wave. Auction is a binary variable that
equals 1 if it is a Maker liquidation. Definitions of other variables are provided in the note in Table 1. Date
FE refers to the date fixed effect, and DEX FE is the fixed effect on the DEX on which the swap trades used
to determine prices occur. Standard errors are clustered by DEX with t- statistics in parentheses. One, two,
and three stars indicate significance at the 5%, 1%, and 0.1% level, respectively.
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predicts a higher liquidation price and consequently a lower liquidation discount for the

auction mechanism. To test whether the liquidation discount is the underlying mechanism,

we conduct two additional regression analysis. First, we regress liquidation discount on

Auction with the same set of control as in Equation (23) to confirm if auction liquidations

are associated with lower discount. Second, we add liquidation discount as an explanatory

variable in Equation (23) and check if the addition of this variable could explain the effect

of Auction on price changes.

Table 3 presents the results from the two regressions. The first regression confirms the

pattern on liquidation discounts observed in Table 1; namely, the auction mechanism is

associated with a reduction in liquidation discount by 3.2 percentage points. The second

regression reveals that when liquidation discount in included as an explanatory variable,

the liquidation mechanism is no longer positive and become statistically insignificant, while

liquidation discount is significant with the expected sign; that is, the higher the discount,

the lower the liquidation price and consequently more negative ∆p. This is consistent with

our hypothesis that the auction mechanism affects ∆p through liquidation discounts.

Ultimately, a lower discount reduces price impact through the quantity channel. For a

fixed repayment amount, a lower discount corresponds to a higher liquidation price, reducing

the quantity of collateral that must be sold. This results in a smaller shift in the supply

curve and, consequently, a smaller impact on price. Directly testing the quantity channel

within the current framework is challenging because the quantity variable appears on the

right-hand side of the equation as part of the liquidation revenue. In the next paragraphs,

we draw on aggregate-level data to provide descriptive evidence for the quantity channel.

Supplementary Evidence To complement our transaction-level analysis, we examine

the total quantity of ETH liquidated as a share of all ETH pledged for each protocol. To

calculate this share, we obtain the total quantity of ETH liquidated during each month in

our sample as the numerator. Then we gather data on the end-of-day aggregate balances

of ETH deposited at Aave and Maker, respectively, and take the monthly average to form

the denominator.29 We choose monthly frequency since the occurrences of liquidations are

relatively infrequent. Figure 4 plots the share of ETH liquidated for the two protocols.

During earlier episodes of liquidations, Aave has a larger spike than Maker in the share

of ETH liquidated. In later episodes with smaller spikes from Aave, Maker’s shares barely

spike. Overall, the average share of ETH liquidated is 0.5% for Aave and 0.16% for Maker.

This evidence suggests that Maker contributes to a smaller aggregate supply from liquidation

29Our calculation also includes Lido Staked Ether (stETH), which is derivative from ETH accepted by
Aave as collateral.
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Table 3: Liquidation discount and price change

(1) (2)
Liquidation Discount (%) Price Change ∆p (%)

Auction -3.187∗∗∗ 0.00392
(-57.94) (0.35)

Liquidation Revenue ($K) -0.0000782 -0.000133∗∗

(-1.97) (-4.23)

Pre-Liquidation Price ($) 0.000143 -0.000262∗∗

(1.34) (-4.04)

Wave Length (min) 0.0876∗∗ -0.0232∗∗∗

(4.20) (-12.75)

Wave Size -0.00907∗∗ 0.00209∗∗∗

(-4.54) (8.20)

Position in Wave 0.00263∗∗∗ 0.000116
(4.87) (0.18)

Liquidation Discount (%) -0.0162∗

(-2.60)

Date FE Y Y

DEX FE Y Y

Debt Token FE Y Y

Observations 7060 7060
R2 0.633 0.045

Column (1) shows the regression of liquidation discount as the dependent variable. Column (2) shows the
regression of price change as the dependent variable. Definitions of independent variables are the same as in
Table 2. Standard errors are clustered by DEX with t- statistics in parentheses. One, two, and three stars
indicate significance at the 5%, 1%, and 0.1% level, respectively.
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Figure 4: Share of ETH liquidated for Aave and Maker

This figure shows the share of ETH liquidated in each month from 2021/04/26 to 2024/03/30. This share is
the total quantity of ETH liquidated divided by the month average balance of all ETH deposited, expressed
in %.

per unit of collateral deposited, consistent with the earlier finding of a smaller price impact.

6 Conclusion

This paper studies how different liquidation mechanisms of DeFi loans impact cryptocurrency

price volatility. Using a static model, we compare the changes in equilibrium prices before

and after a demand shock under two alternative liquidation mechanisms: the fixed-spread

mechanism and the auction mechanism. These represent the two primary mechanisms used

by DeFi protocols. We show that under the fixed-spread mechanism, the liquidation price is

independent of the level of competition among liquidators, whereas it is directly influenced

by competition under the auction mechanism.

When the level of competition is high, the auction mechanism leads to a higher liquidation

price and a lower quantity of liquidated collateral compared to the fixed-spread mechanism.

This implies that the auction mechanism has a smaller amplification effect on the negative

demand shock. Conversely, when the level of competition is low, which can occur if the

market price becomes sufficiently low due to a large negative demand shock, the fixed-spread

liquidation is less attractive than the auction due to the inflexibility of the liquidation price.

This discourages liquidator participation in fixed-spread liquidations, leading to more failed

liquidations, a reduced supply of liquidated cryptocurrencies, and a smaller amplification
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effect compared to the auction mechanism.

Our empirical analysis shows that liquidation transactions have a negative price impact

within the block. For Aave (fixed-spread) liquidations, the magnitude of the price impact

is on average 0.05%, while for Maker (auction) liquidations, it is 0.01%. We show that

the difference in price impact is significant, even conditional on the liquidation size, market

condition, the common shock, and characteristics of liquidation waves. We further show that

this difference is driven by the lower liquidation discounts observed in Maker liquidation,

which can lead to a lower quantity of liquidated collateral. On the aggregate level, we

document that Maker liquidates a smaller share of its ETH compared to Aave, consistent

with the finding of a smaller price impact. These empirical findings align with the model

prediction in the case of relatively low entry cost.
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A Proofs

Proof of Lemma 1 . We start by showing there is no pure-strategy equilibrium. If everyone’s

strategy is to bid t < πf (γp, l), a liquidator can bid t+ϵ and win every liquidation regardless of

the number of competitors, which leads to a discrete increase in winning probability but only

an arbitrarily small decrease in the profit conditional on winning. This results in a discrete

increase in the expected profit. Therefore, the only possible pure-strategy equilibrium is

t = πf (γp, l), in which case the expected profit is 0. But then a liquidator can get a strictly

positive profit by bidding t = 0, because there is a positive probability that they are the

only one matched to this liquidation. Therefore, there is no pure strategy equilibrium.

We next show that H(t) does not have any mass point and has connected support. If H

has a mass point at t, bidding t+ ϵ always leads to a higher expected profit than bidding t

because it leads to a jump in winning probability and only ϵ decrease in profit conditional

on winning. If the support is not connected, that is, there exists an interval (t1, t2) on which

the density of G is zero, then anyone who bids to t2 can deviate to t1 to reduce the payment

without affecting the winning probability. Therefore, bidding t2 cannot be optimal.

By equating (6) with (7), we have

µ(0; ηl)πf (γp, l) =
∑
m

µ(m; ηl) (πf (γp, l)− t)H(t)m, for ∀t ∈ [0, t̄]

Plugging in the expression for Poisson distribution µ(m; ηl) =
ηml e−ηl

m!
, we have

πf (γp, l)e
−ηl =

∑
m

ηml e
−ηl

m!
(πf (γp, l)− t)H(t)m

πf (γp, l) =
∑
m

(ηlH(t))m e−ηlH(t)

m!
(πf (γp, l)− t) eηlH(t)
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Note that
∑

m
(ηlH(t))me−ηlH(t)

m!
= 1, thus

πf (γp, l) = (πf (γp, l)− t) eηlH(t)

H(t) =
1

ηl
[log πf (γp, l)− log (πf (γp, l)− t)]

To find t̄, we need to solve H(t) = 1 because t̄ is the upper bound:

H(t̄) =
1

ηl
[log πf (γp, l)− log (πf (γp, l)− t̄)] = 1

which implies t̄ = πf (γp, l) (1− e−ηl).

Proof of Proposition 1. In equilibrium, the expected profit of participation Πl(p; ηl) must

equal the fixed cost C; otherwise, a positive measure of liquidator would find it profitable

to participate. From Lemma 1, a liquidator’s expected profit can be simplified using the

indifference condition, as in Equation (7). Therefore,

e−η∗f (p,l)πf (γp, l) = C (24)

Take the log of both sides and rearrange to obtain (9). The rest of the proposition follows

by plugging the expression of η∗f (p, l) into the expressions in Lemma 1.

Proof Lemma 2. We solve for the symmetric mixed-strategy equilibrium G with support

[δp, b̄]. Because liquidators are indifferent among all b used in equilibrium, G(b) must satisfy

the equal profit condition, (16). Then b̄ satisfies

G(b̄) =
1

ηl
[log πa(δp, l)− log πa(b̄, l)] = 1,

which can be rewritten as πa(b̄, l) = e−ηlπa(δp, l).

Proof of Proposition 2. Combining the free-entry condition with (16), we obtain

πa(δp, l)e
−η∗a(p,l) = C (25)

Take the log of both sides and rearrange to obtain (18). The rest of the proposition follows

from plugging η∗a(p, l) into the expressions in Lemma 2.

Proof of Lemma 3. To ease presentation, we include C as an argument in qa and qf . We

first calculate the expected quantity of liquidated collateral for a fixed spread liquidation.
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If min {l/γp, 1} (1− γR) p ≤ C, the liquidator’s net benefit from participating is 0. There-

fore, no liquidation occurs and qf (p, l, C) = 0. If min {l/γp, 1} (1− γR) p > C, liquidators

participate and the liquidated quantity is min {l/γp, 1} if the liquidation is successful. The

probability of a success is 1− e−η∗f (p,l), where

e−η∗f (p,l)min {l/γp, 1} (1− γR) p = C.

As a result, the expected liquidated quantity is

qf (p, l, C) =
(
1− e−η∗f (p,l)

)
min {l/γp, 1} = min {l/γp, 1} − C

(1− γR) p
.

Notice that min {l/γp, 1} (1− γR) p > C holds if l > γp and p > C/ (1− γR) or if l < γp

and l/γ −Rl > C. Therefore, we can distinguish two cases. If l > γp,

qf (p, l, C) =

0 if p ≤ C
1−γR

1− C
(1−γR)p

if p > C
1−γR

.

If l < γp,

qf (p, l, C) =

0 if l/γ −Rl < C

l
γp

− C
(1−γR)p

if l/γ −Rl > C
.

Next, we move to qa (p, l, C). Again, we distinguish two cases. If l > δp

qa (p, l, C) =


0 if C > (1−Rδ) p

1− C
p−Rδp

if p−Rδp > C > p−Rl

C+Rl
p

+ C
p
log

(
p−Rl
C

)
− C

p−Rδp
if C < p−Rl

.

If l < δp, then

qa (p, l, C) =

0 if C > l/δ −Rl

C+Rl
p

+ C
p
log

(
l/δ−Rl

C

)
− C

p−Rδp
if C < l/δ −Rl

.

We next calculate ∆ (p, l, C) = qa (p, l, C)− qf (p, l, C).

First, we focus on the case with p − Rl > 0. According to the above discussion, we can

distinguish three cases.
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Case 1: If l < δp < γp, then

∆ (p, l, C) =


C+Rl

p
+ C

p
log

(
l/δ−Rl

C

)
+ R(γ−δ)C

(1−Rδ)(1−Rγ)p
− l

γp
if l

γ
−Rl > C

C+Rl
p

+ C
p
log

(
l/δ−Rl

C

)
− C

p−Rδp
if l

δ
−Rl > C ≥ l

γ
−Rl

0 if C ≥ l
δ
−Rl

.

If C → 0, ∆(p, l, C) → (R− 1/γ) /p < 0. Therefore, auctions lead to fewer liquidated

collateral if C is sufficiently small. If l/γ −Rl > C,

∂∆(p, l, C)

∂C
=

1

p
log

(
l/δ −Rl

C

)
+

R (γ − δ)C

(1−Rδ) (1−Rγ) p
> 0.

To see this, notice l/γ − Rl > C implies that first term after the equality is positive and

γ − δ > 0 implies the second term is positive. If C = l/γ − Rl, then ∆ (p, l, C) > 0.

Therefore, there exists a unique C∗
p,l such that ∆ (p, l, C) = 0 on (0, l/γ −Rl). If C < C∗

p,l,

∆ (p, l, C) < 0 and if C ≥ C∗
p,l, ∆ (p, l, C) ≥ 0.

Case 2: If δp < l < γp, then

∆ (p, l, C) =



C+Rl
p

+ C
p
log

(
p−Rl
C

)
+ R(γ−δ)C

(1−Rδ)(1−Rγ)p
− l

γp
if l

γ
−Rl ≥ C

C+Rl
p

+ C
p
log

(
p−Rl
C

)
− C

p−Rδp
if p−Rl ≥ C > l/γ −Rl

1− C
p−Rδp

if (1−Rδ) p ≥ C > p−Rl

0 if C ≥ (1−Rδ) p

.

Again ∆ (p, l, C) > 0 if C = l/γ−Rl and ∆ (p, l, C) < 0 as C → 0. Moreover, if C < l/γ−Rl,

∂∆(p, l, C)

∂C
=

1

p
log

(
p−Rl

C

)
+

R (γ − δ)

(1−Rδ) (1−Rγ) p
> 0

because (p − Rl)/C > 1 and γ > δ. Therefore, there exists a unique C∗
p,l such that

∆ (p, l, C) = 0 on (0, l/γ −Rl). If C < C∗
p,l, ∆ (p, l, C) < 0 and if C ≥ C∗

p,l, ∆ (p, l, C) ≥ 0.

Case 3: If δp < γp < l, then

∆ (p, l, C) =



C+Rl
p

+ C
p
log

(
p−Rl
C

)
+ R(γ−δ)C

(1−Rδ)(1−Rγ)p
− 1 if p−Rl ≥ C

R(γ−δ)C
(1−Rδ)(1−Rγ)p

if l/γ −Rl ≥ C > p−Rl

1− C
p−Rδp

if (1−Rδ) p ≥ C > l/γ −Rl

0 if C ≥ (1−Rδ) p

.
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Again ∆ (p, l, C) > 0 if C = p−Rl and ∆ (p, l, C) < 0 as C → 0. Moreover if C < p−Rl,

∂∆(p, l, C)

∂C
=

1

p
log

(
p−Rl

C

)
+

R (γ − δ)

(1−Rδ) (1−Rγ) p
> 0.

We can show that C∗
p,l = (p−Rl)/x∗ where x∗ solves

1− x+ log (x) +
R (γ − δ)

(1−Rδ) (1−Rγ)
= 0.

Notice that x∗ > 1, which implies that C∗
p,l < p − Rl. If C < C∗

p,l, ∆ (p, l, C) < 0 and if

C ≥ C∗
p,l, ∆ (p, l, C) ≥ 0. Notice that in the three cases, C∗

p,l < min {p, l/γ} − Rl. This

proves the first claim of the lemma.

Next, we consider the case with p − Rl < 0. Because Rδ < Rγ < 1, p − Rl < 0 implies

that δp < γp < l. Therefore,

∆ (p, l, C) =


R(γ−δ)C

(1−Rδ)(1−Rγ)p
if l/γ −Rl ≥ C > 0

1− C
p−Rδp

if (1−Rδ) p ≥ C > l/γ −Rl

0 if C ≥ (1−Rδ) p

,

which is non-negative. Because γ < R−1, the first branch always exists. Therefore, as C → 0,

∆ (p, l, C) → 0. This proves the second claim of the lemma.

Proof of Proposition 4. We now prove each of the claims.

Proof of Claim 1: Recall that

Qa (p, C) = α

∫ θp∗

θp

qa (p, l, C) f (l) dl

Qf (p, C) = α

∫ θp∗

θp

qf (p, l, C) f (l) dl.

Because θp < p and Rθ < 1, the set (θp, p/R) is not empty.

∆Q̃ (p, C) = Qa (p, C)−Qf (p, C) = α

∫ θp∗

θp

∆(p, l, C) f (l) dl

= α

∫ min{p/R,θp∗}

θp

∆(p, l, C) f (l) dl + α

∫ θp∗

min{p/R,θp∗}
∆(p, l, C) f (l) dl.

By the proof of Lemma 3, the first term is positive if C is sufficiently small and the second

term can be made arbitrarily small if C is sufficiently close to 0, which implies ∆Q̃ (p) < 0 if
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C is sufficiently small. Define

Cp = sup
{
C̃ : ∆Q̃ (p, C) < 0 for all C < C̃

}
.

Then Cp > 0 for every p ∈ [v, p∗). Define C = inf
{
Cp : p ∈ [v, p∗)

}
. Then by definition,

∆Q̃ (p) < 0 for all p ∈ [v, p∗). We only need to show C > 0.

To see this, first notice that for any small ε > 0, C = min
{
C1 (ε) , C2 (ε)

}
where C1 (ε) =

inf
{
Cp : p ∈ [v, p∗ − ε]

}
and C2 (ε) = inf

{
Cp : p ∈ [p∗ − ε, p∗)

}
. We next show C1 (ε) > 0

and C2 (ε) > 0. Suppose, toward contradiction, C1 (ε) = 0. This implies there exists

a sequence {pn}∞n=1 such that pn ∈ [v, p∗ − ε] and limn→∞Cpn = 0. Because [v, p∗ − ε]

is a compact set, there exists a converging subsequence of {pn}∞n=1, denoted as {pnk
}∞k=1.

Denote its limit as p̂. Notice that p̂ ∈ [v, p∗ − ε]. Then 0 = limk→∞ ∆
(
pnk

, Cpnk

)
=

limk→∞∆
(
p̂, Cpnk

)
> 0, which leads to a contradiction. Therefore, C1 (ε) > 0 for all small

ε > 0.

Next, choose ε > 0 sufficiently small such that Rθp∗ < p∗ − ε. This implies that for all

p ∈ [p∗ − ε, p∗], Rl < p if l ∈ [θp, θp∗]. Then for all l ∈ [θ (p∗ − ε) , θp∗] and p ∈ [p∗ − ε, p∗],

C∗
p,l > 0. Using a similar argument as the above, we can show that

C2 = inf
{
C∗

p,l : p ∈ [p∗ − ε, p∗] , l ∈ [θ (p∗ − ε) , θp∗]
}

is positive and if C < C2, qa (p, l, C) > qf (p, l, C) for all p ∈ [p∗ − ε, p∗] and l ∈ [θ (p∗ − ε) , θp∗].

Therefore, if p ∈ [p∗ − ε, p∗) and C < C2

∆Q̃ (p, C) = α

∫ θp∗

θp

[qa (p, l, C)− qf (p, l, C)] f (l) dl < 0,

which implies that Cp ≥ C1 > 0 for all p ∈ [p∗ − ε, p∗). As a result, C2 (ε) ≥ C1 > 0.

Proof of Claim 2: Notice that if p < Rl, qa (p, l, C) ≥ qf (p, l, C) for all C > 0, where

the inequality holds strictly if C ∈
(
0,min

{
l
δp
, 1
}
(p−Rδp)

)
. We can then define C∗

p,l = 0.

If p > Rl, qa (p, l, C) ≥ qf (p, l, C) for all C ≥ C∗
p,l where the inequality holds strictly if

C ∈
(
C∗

p,l,min
{

l
δp
, 1
}
(p−Rδp)

)
. Define C̄∗ = sup

{
C∗

p,l : p ∈ [v, p∗) , l ∈ [θv, θp∗]
}
. Then

C̄∗ < p∗ (1−Rδ) and if C > C̄∗, qa (p, l, C) ≥ qf (p, l, C) for all p ∈ [v, p∗) , l ∈ [θv, θp∗],

which in turn implies that Qa (p, C) ≥ Qf (p, C) for all p ∈ [v, p∗).

Next, define

Cp = inf
{
C̃ : ∆Q̃ (p, C) ≥ 0 for all C > C̃

}
and

C = sup
{
Cp : p ∈ [v, p∗)

}
.
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Because Cp ≤ C̄∗ by definition, C < C
∗
< ∞. Moreover, ∆Q̃ (p, C) ≥ 0 for all C > C and

p ∈ [v, p∗), and if C < C, there exists p ∈ [v, p∗) such that Qa (p) < Qf (p). Notice that by

definition, C ≥ C.

Proof of Claim 3: Notice that if (1−Rδ) p > C > (1−Rγ) p, qf (p, l, C) = 0 for all

p, l and qa (p, l, C) > 0 for l > p. If (1−Rδ) p < C, qf (p, l, C) = qa (p, l, C) = 0 for all p, l.

Therefore, if p < min {C/ (1−Rγ) , θp∗}, Qa (p) ≥ Qf (p). Moreover, if at the same time

p > (1−Rδ) p, Qa (p) > Qf (p). This concludes the proof of the proposition.
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