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Abstract 

Studies such as Lemmon, Roberts and Zender (2008) demonstrate how stable firms’ 
capital structures are over time, and raise the question of whether new theories of capital 
structure are needed to explain these phenomena. In this paper, I show that trade-off 
theory-based empirical proxies that are observed with error offer an alternative 
explanation for the persistence in portfolio-leverage levels. Measurement error noise 
equal to 80% of the cross-sectional variation in the market to book ratio, coupled with 
slight mismeasurement of other factors, matches simulated data moments to empirical 
moments. This suggests that unobserved investment opportunities play an important role 
in explaining leverage ratios. 

JEL classification: G32, C18 
Bank classification: Financial markets; Econometric and statistical methods 

Résumé 

Certains auteurs comme Lemmon, Roberts et Zender (2008) démontrent la stabilité à 
long terme de la structure financière des sociétés et se demandent s’il est nécessaire de 
formuler de nouvelles théories sur la structure du capital pour expliquer un tel 
phénomène. Dans la présente étude, l’auteur montre que les indicateurs empiriques 
fondés sur la théorie de l’arbitrage et observés de façon erronée offrent une autre 
explication de la persistance de l’effet de levier financier dans les portefeuilles. Le 
recours à un bruit d’erreur de mesure équivalant à 80 % de la variation transversale du 
ratio cours / valeur comptable, conjugué à la mesure légèrement inexacte d’autres 
facteurs, se traduit par une concordance entre les moments simulés et les moments 
empiriques. Ce résultat laisse à penser que les possibilités d’investissement non observées 
contribuent fortement à expliquer les ratios de levier financier. 

Classification JEL : G32, C18 
Classification de la Banque : Marchés financiers; Méthodes économétriques et 
statistiques 

 

 



1 Introduction and Background

Financial leverage, the ratio of a firm’s debt to its assets, is generally accepted to be

a slow-moving variable.1 A recent addition to the literature on leverage persistence is

by Lemmon, Roberts, and Zender (2008), who document that when firms are sorted

into portfolios based on their leverage, the average leverage levels of these portfolios do

not converge to the unconditional mean, even after 20 years. Furthermore, the authors

establish that this phenomenon persists even after controlling for factors that are be-

lieved to drive leverage: when firms are sorted into portfolios on the basis of residuals

from a regression of leverage on a set of determinants motivated by the trade-off theory

of capital structure, and then tracked for 20 years post-portfolio formation, the mean

leverage levels of these portfolios still exhibit long-term persistence. Lemmon, Roberts,

and Zender (2008) show that firm fixed effects, rather than any of the commonly used

time-varying explanatory variables, explains most of this persistence. Since firm fixed

effects are unsatisfactory from a theoretical point of view, the authors suggest that new

theories of capital structure may be needed to explain the persistence of leverage ratios.

In this paper, I seek an explanation for this fixed-effect-like feature of leverage data

in the context of portfolio sorts. In a framework motivated by the trade-off theory of

capital structure, I focus on measurement error in empirical proxies of the true under-

lying economic variables as a possible cause of this phenomenon. I demonstrate that

if leverage is governed by a persistent explanatory variable that is mismeasured, using

the mismeasured explanatory variable in a regression creates an artificial persistence in

residual-sorted portfolios in the following manner: conditional on an observed residual,

future expectations of leverage are no longer equal to the unconditional mean. Instead,

a large positive residual will forecast above-average future leverage. This occurs because

the estimated residual is correlated with the true unobservable explanatory variable,

which in turn predicts leverage.

It is reasonable to assume that the factors used in capital structure analysis contain

measurement error. The market-to-book ratio is often used as a proxy for investment

opportunities: under the trade-off theory, the larger this ratio, the less debt a firm

should be willing to take on to take advantage of the interest tax shield, ceteris paribus.

The real option to invest is riskier than assets in place, which would thus warrant a

capital structure with less debt. As an example of how the market-to-book ratio could

be inaccurate, consider Facebook between 2012 and 2014: over a span of less than two

years, Facebook’s market-to-book ratio almost quadrupled. Yet, it is hard to imagine

1For example, when modelled as an AR(1) process, the estimated autocorrelation coefficient for the

leverage ratio tends to be around 0.9.
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that the same is true of Facebook’s actual, unobserved investment opportunities, since

neither the company nor its business environment have changed that drastically over

the two-year time frame.

While measurement error in economic variables is intuitively reasonable, a natural

question is: how much measurement error is consistent with the documented persistence

in portfolio sorts? I find that if we assume that a single factor drives leverage (we

can think of this factor as a composite of many trade-off theory-based explanatory

variables), then the measurement-error variance of this “composite” variable needs to

be 42% larger than its cross-sectional variance to reproduce the Lemmon, Roberts,

and Zender (2008) portfolio leverage levels. While this seems large, even much smaller

levels of measurement error produce a remarkable level of persistence in residual-based

portfolio sorts. For instance, if the ratio of measurement error to state noise in the

explanatory variable is as low as 25%, the residual-based portfolios still exhibit a sizable

amount of persistence. Therefore, measurement error is likely an important contributor

to the persistence in residual-sorted leverage portfolios.

In a further analysis, I examine measurement error in the explanatory variables used

in studies such as Lemmon, Roberts, and Zender (2008), Rajan and Zingales (1995)

and Frank and Goyal (2009). Using a simulated method-of-moments approach, I match

simulated data moments to empirical moments. The moments include portfolio leverage

levels, summary statistics on leverage and explanatory factors, and typical estimated

leverage regression parameters. I find that in this expanded calibration, low quantities

of measurement error in profitability, tangibility, and industry leverage, coupled with

a measurement-error variance equal to about 80% of the cross-sectional variation in

the market-to-book ratio, result in a good match between simulated and empirical

moments. This finding is consistent with studies such as Erickson and Whited (2006),

who document that a large amount of the variability in the market-to-book ratio can

be attributed to measurement error, and not to true Tobin’s q. My finding suggests

that unobserved investment opportunities play an important role in explaining leverage

ratios. The puzzle of leverage persistence in a portfolio sort context may therefore

be resolved by the proper measurement of existing economic variables, rather than by

devising new theories of capital structure.

Related Literature

Twenty-six years after the seminal work of Modigliani and Miller (1958), Myers (1984)

remarked that “we do not know how firms choose the debt, equity or hybrid securities

they issue.” Much effort has gone into a better understanding of what drives corporate
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capital structures, yet the question of whether firms do have a target capital structure

towards which they actively adjust their debt/equity mix is open. Titman and Wes-

sels (1988) find several variables that help predict a firm’s capital structure, yet the

variables do not correspond to any one theory. Fischer, Heinkel, and Zechner (1989)

propose a dynamic capital structure model, where firms adjust towards an optimum,

but are hampered by adjustment costs. Hovakimian, Opler, and Titman (2001) provide

evidence that firms behave in a fashion consistent with a trade-off model, a finding that

is echoed in Leary and Roberts (2005). Roberts (2002) shows that firms appear to

adjust towards firm-specific time-varying targets, that adjustment speeds vary consid-

erably across industries, and that accounting for measurement error increases the speed

of adjustment. In their extensive survey, Graham and Harvey (2001) find some, though

not particularly strong, support for the trade-off theory. Baker and Wurgler (2002), on

the other hand, suggest that firms’ issuance behaviour is driven by attempts to time

the market, while Welch (2004) shows that firms appear to do nothing to counteract

mechanistic stock return effects on market leverage. In Hennessy and Whited (2005),

there is no leverage target towards which firms adjust, in spite of their optimizing be-

haviour. Chang and Dasgupta (2009) argue that the evidence for the trade-off theory is

not as strong as it may seem, since random financing generates data that are similar to

what actually is observed. Overall, the evidence for firms adjusting towards an optimal

capital structure is mixed.

Lemmon, Roberts, and Zender (2008) contribute to this strand of literature. By

analyzing leverage portfolios, they find that “high (low) levered firms tend to remain

as such for over two decades.” The authors sort firms into quartile portfolios on the

basis of firm leverage, and track the portfolios’ average leverage levels for 20 years.

They find a large initial dispersion between the leverage portfolios. Over the years, the

portfolios do converge to some extent (most of the convergence happens early on), but

significant differences remain, even after 20 years. Controlling for known determinants

of capital structure in a regression, and sorting on the regression residuals instead of

on actual leverage has little effect on the results: the time series of the residual-based

portfolios are very similar to those of the actual leverage-based portfolios. The authors

thus characterize leverage ratios as containing a permanent, time-invariant leverage

target and a transitory mean-reverting component, which may be attributed to active

capital structure management. Furthermore, Lemmon, Roberts, and Zender (2008)

show through a variance decomposition that a firm fixed effect has more explanatory

power than any existing time-varying determinants, and thus is the factor that best

explains the cross-section of capital structure. The authors also show that this effect

pre-dates firms’ IPOs, which suggests that “... changes in the distribution of control,
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the information environment, and the access to capital markets... do little to alter the

relative costs and benefits that determine firms’ preferred leverage ratios.”

DeAngelo, DeAngelo, and Whited (2011) offer a potential explanation of leverage

persistence. In their model, firms can finance investment by using retained earnings

(cash), by issuing debt or by issuing equity. Carrying cash forces the firm to incur agency

costs proportional to the cash balance. Issuing debt is costless, but credit rationing caps

a firm’s debt capacity. Equity issuance, on the other hand, is costly. Generally, firms

will avoid carrying a cash balance owing to the associated agency costs. Instead, when

installing new capital, they will free up debt capacity so as to avoid a costly equity

issuance. This “transitory” debt, coupled with various frictions in the model and cross-

sectional dispersion in profitability shocks, leads to actual leverage-based sorts that

resemble those in Lemmon, Roberts, and Zender (2008).

Another recent effort to explain leverage persistence is by Menichini (2010). His

model, which includes agency costs and endogenous investment, leverage, and dividend

payouts generates portfolio sorts on both actual and unexpected leverage that exhibit

long-term persistence. This occurs largely because in his model there is no single long-

term mean towards which firms revert.

On the other hand, DeAngelo and Roll (2011) question the stability of capital

structures altogether, and argue that it is the exception and not the rule. They find

that many firms that have been listed for 20 or more years have leverage levels in at

least three different quartiles.

The goal of this study is to reconcile some of the recent empirical findings regarding

the persistence of capital structure. Lemmon, Roberts, and Zender (2008) provide

evidence for leverage persistence via their portfolio sorts, and find that a firm fixed

effect best explains the data. Both Roberts (2002) and Flannery and Rangan (2006)

suggest that measurement error is partly responsible for the sluggish convergence of

leverage ratios towards their mean, as measured by the adjustment speed parameter in

a partial-adjustment framework. Flannery and Rangan (2006) also show that including

firm fixed effects increases the estimated convergence speeds. My paper expands on

this literature: I explore the channel through which measurement error can add to

the persistence of leverage and load on a fixed effect in a portfolio sort setting. To

extract the amount of measurement error necessary to reproduce the stylized facts,

I use a model in which persistence stems from slow-moving, mismeasured leverage

determinants rather than from a firm fixed effect.
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2 Persistence in Portfolio Sorts and Possible Expla-

nations

The data sample consists of firms listed in the annual Compustat database between

1965 and 2003. Financial institutions and firms with missing asset or debt values are

excluded. Leverage is constrained to lie in the closed unit interval. Definitions of all

variables are given in Appendix A. Explanatory variables are winsorized at the 1st

and 99th percentiles. Table 1 presents summary statistics that are similar to those in

Lemmon, Roberts, and Zender (2008). The table also shows a prominent feature of

the data – namely, the existence of zero-leverage firms, whose proportion is sizable (see

e.g., Strebulaev and Yang (2013)).

[Table 1 about here.]

The procedure for the portfolio sorts follows Lemmon, Roberts, and Zender (2008)

and generates similar results: Starting in 1965, and then every year thereafter, I sort

firms into four quartile portfolios on the basis of their book leverage level. I then com-

pute the mean leverage of each portfolio for the next 20 years, keeping its composition

constant (save for potential exits from the sample).2 This results in a total of 38 port-

folio time series, each with a length of 20 years or less. The portfolios are then averaged

cross-sectionally in event time. Panel A of Figure 1 shows the long-term persistence in

raw leverage that this procedure produces.

[Figure 1 about here.]

Panel A of Figure 1 is virtually identical to Panel A of Figure 1 in Lemmon, Roberts,

and Zender (2008). There is wide cross-sectional dispersion among portfolios in the

initial sorting period. This dispersion is followed by an initially quick convergence

toward the overall mean, which starts to taper off noticeably as we move further away

from the portfolio’s formation year. After 20 years, there is still a 16-percentage-point

difference between the highest and lowest leverage portfolios.

Since the pattern in Figure 1 could be the result of cross-sectional variation in the

underlying determinants of firm leverage, Lemmon, Roberts, and Zender (2008) regress

leverage on lagged firm size, profitability, tangibility, market-to-book equity and Fama-

French 38-industry dummies.3 In a variant of the original portfolio sorts, firms are

2Note that starting in 1983, the available time series for each portfolio will decrease by one year

each year.
3The regressions are estimated every year, which allows for time-varying coefficient estimates. Size,

profitability and an industry dummy are used, e.g., in Titman and Wessels (1988), while tangibility

and market-to-book equity are used, e.g., in Rajan and Zingales (1995).
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now sorted into portfolios based on the estimated regression residuals (the “unexpected

leverage”) instead of on actual leverage.

Similar to Lemmon, Roberts, and Zender (2008), I also perform sorts based on

“unexpected leverage,” but instead of industry dummies, I use mean industry leverage

(identified by Frank and Goyal (2009) as an important determinant of leverage). Panel

B of Figure 1 depicts the residual-based sorts and reproduces the findings of Lemmon,

Roberts, and Zender (2008) virtually identically (see their Panel A, Figure 2). The

cross-sectional portfolio dispersion in the formation year is slightly reduced, when com-

pared with sorting on actual leverage. However, large differences between the portfolios

remain over the entire 20 years. This is inconsistent with a well-specified regression,

where convergence of the portfolio-leverage averages towards the overall mean should

speed up, since the residuals would not contain any information about firms’ future

leverage levels.

The persistent differences between leverage portfolios cast doubt on theories of cap-

ital structure that have the firm adjust towards some kind of optimal mix of debt and

equity. However, before turning to new theories, it is useful to know to what extent ex-

isting theories are able to accommodate leverage persistence in a portfolio-sort setting.

There are several possible channels that can give rise to the persistence of residual-based

leverage portfolios. All are manifestations of the same underlying fact: the regression

residuals must contain information about future levels of leverage. The first channel

is that empirical specifications of leverage regressions are plagued by an omitted vari-

able problem. In its simplest form, leverage is largely determined by a time-invariant

firm fixed effect.4 Since the omitted fixed effect is constant over time, sorting on the

regression residual would lead to leverage persistence in the portfolios.

Another possibility is that regressions omit one or more time-varying persistent vari-

ables that determine leverage. As with a fixed effect, the regression residuals are no

longer just noise, but contain information. An example of this strand of literature is

the recent paper by DeAngelo, DeAngelo, and Whited (2011), who model firms as in-

curring transitory debt obligations that represent deliberate, but temporary, deviations

from a target capital structure. When they carry out portfolio sorts based on their sim-

ulated firms’ leverage, they find persistent portfolio-leverage levels. While DeAngelo,

DeAngelo, and Whited (2011) do not sort on regression residuals, some of the persis-

tence would likely remain in residual-based sorts: without accounting for the level of

transitory debt, an omitted variable would be imbedded in the residual.

4A firm fixed effect can be thought of as every firm having its own intercept in the regression.
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A third possibility is that the regressions are misrepresentations of the underlying

economic mechanism. For instance, if firms face adjustment costs as in Fischer, Heinkel,

and Zechner (1989) or Hennessy and Whited (2005), there would be no target leverage

as implied by the regression. Instead, the firm would alter its capital structure only

after leverage drifts outside of a certain range.

Finally, it is possible that our economic models are correct, but the empirical proxies

for the benefits and costs of debt are inaccurate. If the explanatory variables were

mismeasured, the regression residual and leverage itself would be correlated, and sorting

on the residual would resemble sorting on leverage.

Generally, distinguishing conclusively between these alternatives is difficult. Includ-

ing firm fixed effects in leverage regressions explains much of the cross-sectional vari-

ation among firms. It does not completely eliminate the interesting portfolio patterns

in residual-based sorts, as shown in Panel C of Figure 1. While a fixed effect reduces

initial dispersion, there is still no convergence, since the average leverage level of the

low-leverage portfolio is now substantially higher than that of the high-leverage port-

folio after 20 years. In essence, including a fixed effect de-means the portfolio-leverage

time series, but the patterns, albeit shifted, still remain.

In the sections to follow, I show that the stylized facts of persistence in leverage

sorts obtain if leverage is a function of one or more mismeasured explanatory variables

that exhibit a certain degree of persistence. My results cannot prove that measurement

error is the sole source of the phenomena I study. However, measurement error in

explanatory variables is intuitively sensible and consistent with the data, which studies

like Flannery and Rangan (2006), Roberts (2002), and Erickson and Whited (2006)

confirm.

2.1 Persistence in Leverage Portfolios Due to Measurement

Error

In this section, I formally examine persistence in leverage sorts, starting with the case

where we can observe all variables perfectly. If leverage is determined by one or more

persistent explanatory variables, then sorting firms into portfolios based on observed

leverage will produce persistent portfolios. The persistence of the portfolio-leverage time

series reflects the persistence of the determinants. When firms are sorted into portfolios

based on residuals from a regression that controls for the persistent determinants of

leverage, differences between portfolio-leverage levels also arise naturally during the

formation period. This happens because the residual is, by construction, correlated with

the dependent variable, leverage. However, if the regression residuals are uncorrelated
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over time, then any initial difference between the portfolios should completely vanish

in the subsequent period. Finally, I show how persistent differences in residual-based

portfolios arise when explanatory variables are measured with error. In my setup, I

do not assume measurement error to be persistent or firm-specific. The only persistent

variable is the true, but unobserved regressor.

2.1.1 Base Case: A Correctly Specified Model

I begin with a world where leverage is a function of a single persistent explanatory

variable, which is perfectly measured. There exists a panel of firms, where i indexes a

firm and t indexes time. The dependent variable of interest – leverage – is denoted by

levit. Its true relationship to the explanatory variable xit (e.g., size, profitability, or the

book-to-market ratio) is given by:

levit = βxit + uit (1)

where uit ∼ N(0, σ2
uit

) is an error term and βxit can be thought of as firm i’s leverage

target, towards which the firm fully adjusts every time period. The firm’s actual lever-

age levit equals its target, plus a random deviation uit. This deviation, which Lemmon,

Roberts, and Zender (2008) refer to as unexpected leverage, represents an exogenous

shock that occurs after adjustment to the target has taken place. For instance, a change

in the market value of the firm’s equity would cause actual leverage to deviate from the

target. The leverage determinant xit follows an AR(1) process of the form:

xit = φxit−1 + εit (2)

where φ > 0 and εit ∼ N(0, σ2
εit

). For simplicity, I assume that the explanatory vari-

able and, hence, leverage, have a mean of 0.5 Under this specification, leverage directly

inherits the dynamics of the explanatory variable. Tomorrow’s expected leverage, condi-

tional on today’s observed leverage, is governed by the magnitude of the autocorrelation

coefficient of the AR(1) process, since E(levit|levit−1) = φlevit−1.

If the value of φ is large,6 then if we form portfolios by sorting on leverage and

track their evolution over time, the high-leverage portfolios decline only slowly towards

5This assumption is not crucial and will be relaxed in Section 3 We could easily add a mean to the

explanatory variable xit without affecting any of the conclusions. Alternatively, since it is possible in

my setup for leverage to be negative, it is perhaps most natural to think of the levit as logit leverage

ln
(

lev
1−lev

)
. An inverse logit transformation would map leverage from the real line back to the unit

interval.
6The assumption of a slow-moving explanatory variable is reasonable, since the empirical factors

and the underlying capital structure determinants they proxy for are both persistent. Empirically, the

persistence of the tangibility ratio is φ = 0.95, for example.
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the unconditional mean, while the leverage of low-leverage portfolios increases equally

slowly towards the mean. The persistent difference between a high-leverage portfolio

and a low-leverage portfolio reflects the persistence in the explanatory variable. Figure

2 illustrates this via a simulation. Leverage is a function of a persistent explanatory

variable xit, whose autocorrelation coefficient is φ = 0.85. The persistence in the

explanatory variable is clearly reflected in the slow convergence of the leverage portfolios

in Panel A: the high-leverage and low-leverage portfolios have not converged to the

unconditional mean of 0 after 20 time periods.

[Figure 2 about here.]

If instead of sorting on actual leverage, we sort on unexpected leverage, i.e., on the

residuals obtained from a regression of levit on xit, convergence happens immediately

after the sorting period. Since there is no information in the regression residual about

future values of the regressor and, hence, leverage, next period’s average portfolio lever-

age drops to its unconditional mean of zero right away, irrespective of the magnitude

of the residual that we condition on. To see this analytically, combine (1) with (2) to

obtain the following sample regression equation:

levit+1 = βφxit + βεit+1 + uit+1 (3)

The expectation of next period’s leverage levit+1, conditional on this period’s esti-

mated regression residual ûit, obtained by running regression (1), is:

E[levit+1|ûit] = βφE[xit|ûit] + βE[εit+1|ûit] + E[uit+1|ûit]

= 0 (4)

since all three expectations on the RHS are equal to zero. E[xit|ûit] = E[xit] = 0

follows from the orthogonality of the residuals to the regressor. The second expectation

vanishes owing to the independence of εit+1 and ûit, while the last expectation equals

zero because of the temporal independence of the regression residuals. Thus, under a

correctly specified model of leverage, conditioning on the estimated residuals does not

produce persistent differences between leverage portfolios.

Panel B of Figure 2 shows the results for sorting on unexpected leverage (the es-

timated regression residual) instead of on leverage itself. Since the regression is well-

specified, today’s residual contains no information about tomorrow’s leverage, and both

portfolios converge to the unconditional mean after one time period.

2.1.2 Case II: Persistence as a Consequence of Measurement Error

Under a correctly specified model of leverage, conditioning on the estimated residuals

does not produce persistent differences between leverage portfolios. This is no longer
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true if we measure a slowly moving explanatory variable with error. To understand the

transmission mechanism, I first assume that the regressor xit is not directly observable,

but a mismeasured regressor x∗it is:

x∗it = xit + ηit (5)

where ηit ∼ N(0, σ2
ηit

) denotes measurement error. The leverage equation is still given

by (1), and the AR(1) process of the explanatory variable is given by (2). The error

terms of all three equations (i.e., uit, εit and ηit) are independent. If we run a regression

of levit on x∗it, the sample regression equation (* indicates a coefficient or variable that

is affected by measurement error, and ̂ denotes a regression estimate) is:

levit = β̂∗x∗it + û∗it (6)

The estimated slope coefficient of regression equation (6) is biased towards 0 (see

Appendix B.1):

β̂∗ =
cov(x∗it, levit)

σ2
x∗it

= β
σ2
xit

σ2
xit

+ σ2
ηit

≤ β (7)

The estimated regression residuals û∗it are now biased as well. If we use the residuals

û∗it to form portfolios at time t and track the leverage of these portfolios over time, next

period’s expected portfolio leverage is no longer equal to zero (or to the unconditional

mean, more generally):

Proposition 1. Suppose that leverage is determined by levit = βxit + uit, where

xit = φxit−1 + εit, and all noise terms are normally distributed. If we regress lever-

age on the mismeasured observable variable x∗it = xit + ηit, then expected leverage next

period, conditional on this period’s estimated regression residual û∗it, is a function of the

estimated residual:

E(levit+1|û∗it) = φ

[
1 +

σ2
uit

β2

(
1

σ2
ηit

+
1

σ2
xit

)]−1

︸ ︷︷ ︸
= c≥ 0

û∗it (8)

Proof. See Appendix B.2.

Equation (8) shows that next period’s expected leverage is directly linked to this

period’s regression residual via the coefficient c. Its sign is positive, which implies

that the expected leverage, conditional on a positive residual, will overstate the true

expected leverage (and understate true expected leverage for a negative residual). This

creates an artificial leverage dispersion when we track leverage portfolios. The rate at
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which the dispersion disappears is directly governed by the coefficient φ, the persistence

in the underlying latent explanatory variable.

The link between the regression residual and expected leverage is that the mismea-

sured residual now contains information about the magnitude of the true explanatory

variable xit, which in turn determines leverage. Recall the general expression for ex-

pected portfolio leverage, conditional on sorting on the regression residual:

E[levit+1|û∗it] = βφE[xit|û∗it] + βE[εit+1|û∗it] + E[uit+1|û∗it] (9)

As under the no-measurement-error scenario, the second and third expectations on

the RHS are still equal to zero. The first expectation on the RHS, however, is no longer

equal to 0:

Lemma 1. In the setup described in Proposition 1, the expectation of the regressor,

conditional on the estimated regression residual û∗it, is:

E(xit|û∗it) = E(xit) +
Cov(xit, û

∗
it)

V ar(û∗it)
[û∗it − E(û∗it)]

=

[
β +

σ2
uit

β

(
1

σ2
ηit

+
1

σ2
xit

)]−1

︸ ︷︷ ︸
= b

û∗it (10)

Proof. See Appendix B.2, beginning with (43).

This expression relates the expectation of xit, conditional on an estimated residual

û∗it, to the true parameters of the underlying processes, which are captured in the

coefficient b. Importantly, knowing a particular value of û∗it tells us something about

the value of the true xit. This is because the estimated residual is not orthogonal to

the true regressor, i.e., E(xit|û∗it) 6= E(xit), unlike in the setup without measurement

error. With a latent explanatory variable, if the true relationship between levit and xit

is positive (i.e. β > 0), then a larger residual û∗it predicts a true xit that is above its

unconditional mean. Conversely, if β < 0, then a larger residual û∗it predicts a true xit

that is below its unconditional mean.

The more mismeasured the regressor is, the more persistent are the residual-based

portfolio leverage levels. In Figure 3, I illustrate the effect of measurement error when

the value of the AR(1) coefficient of the regressor is φ = 0.85. The figure plots the

relationship between portfolio-leverage dispersion and the magnitude of measurement

error, when firms are sorted based on regression residuals. I include two lines for

reference: the solid line shows the sort based on leverage itself, while the dotted line

shows a residual-based sort without measurement error. In the latter case, the portfolios
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collapse to the unconditional mean immediately after the sorting period, as discussed

previously. The dashed lines show sorts for two levels of the measurement error: ση ∈
{0.5, 1}. The ratio of measurement noise to state noise in the regressor is thus also

ση/σε ∈ {0.5, 1}. The larger the quantity of measurement error is, the more the residual-

based sorts start to resemble leverage-based sorts. At the higher level of measurement

error, the dispersion in portfolio leverage is about 50% of the dispersion when sorting

is done on leverage itself.

[Figure 3 about here.]

Lemma 2. In the setup described in Proposition 1, the estimated regression residual

û∗it will exhibit persistence:

E(û∗it+1|û∗it) = φ(β − β̂∗)E(xit|û∗it) =
[
φ(β − β̂∗)b

]
û∗it (11)

where b is as defined in Lemma 1.

Proof. See Appendix B.3.

Lemma 2 shows that when a persistent regressor is mismeasured, the estimated

regression residual itself will exhibit persistence. This persistence can be linked to the

explanatory power of a firm fixed effect: increasing persistence (via a higher value of

φ) and a larger attenuation bias in the cross-sectional β coefficient will increase the

explanatory power of a firm fixed effect. This occurs because the estimated firm fixed

effect loads on the persistent error term.

3 Extracting Measurement Error from Explanatory

Variables: Calibration

I now turn to the important question of how much measurement error is needed to

reproduce both the wide initial dispersion between the residual-based portfolios, and

the slow post-sort convergence evident in the data. To assess whether a reasonably

calibrated model with measurement error in the explanatory variables can satisfactorily

explain the data, I employ two different approaches: in the first approach, described

in Sections 3.1 to 3.2, I use the portfolio sorts based on actual leverage as the starting

point. If leverage is determined cross-sectionally by levit = βxit + uit, then in every

time period, a firm’s leverage is equal to target leverage βxit plus an error term uit.

Therefore, the leverage time series of the portfolios based on actual leverage display the

same dynamics as the true leverage target, and thus can be used to infer the target’s
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law of motion. Furthermore, if the regressions underpinning the residual-based sorts

correctly identified this true target, the leverage levels of the residual-sorted portfolios

should converge to the unconditional mean immediately. Since they do not, I use the

portfolio-leverage time series for the residual-based sorts to establish how mismeasured

the leverage target (and thus its determinant) needs to be in order to be consistent

with the residual-based sorts.

The second approach to quantifying the amount of measurement error needed to

reproduce persistent leverage in portfolio sorts is outlined in Section 3.3. There, I

examine four actual explanatory variables consistent with the Lemmon, Roberts, and

Zender (2008) study, and determine how mismeasured each of these needs to be in order

to be consistent with the portfolio sorts, as well as with other observed data moments.

3.1 Estimating Target-Leverage Dynamics

The first approach consists of a two-step method: Step 1 parameterizes the law of

motion for a firm’s target leverage. Step 2 (see Section 3.2) uses this law of motion in

conjunction with residual-based portfolio sorts to arrive at an estimate of measurement

error.

To start, consider again the setup from Section 2.1, where leverage levit is a function

of a slow-moving factor xit. This factor evolves according to an AR(1) process, but

the true realizations of the process are latent. The observed values x∗it contain iid

measurement-error terms ηit:

levit = βxit + uit (12)

xit = φ0 + φ1xit−1 + εit (13)

x∗it = xit + ηit (14)

where uit ∼ N(0, σ2
u), εit ∼ N(0, σ2

ε ), and ηit ∼ N(0, σ2
η). An intercept φ0 is included in

the AR(1) process for the leverage determinant to allow for a positive leverage mean,

as in the data (see Figure 1 for the mean leverage time series of the four leverage

portfolios).

In the cross-sectional specification in equation (12), actual leverage levit can be

viewed as the sum of two components: a leverage target l̂evit ≡ βxit = E[levit|xit],
which the firm adjusts to every period, and a random deviation from the target uit.

Implicit in this representation is the assumption that there are no adjustment costs

that would cause the firm to deviate systematically from its target for multiple periods.

While the target in (12) is determined by only a single variable, using the target-leverage

representation does allow the flexibility of viewing the target as a function of potentially
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many explanatory variables, so the above setup of only one explanatory factor does not

result in a loss of generality. Substituting target leverage in (12) and (13) above gives

the following system:

levit = l̂evit + uit (15)

l̂evit = ϕ0 + ϕ1l̂evit−1 + εit (16)

x∗it = xit + ηit (17)

The law of motion for target leverage l̂evit in (16) is the same as that for the original

factor7 in (13), scaled by the constant β.

To estimate the parameter values in (15) to (17), I proceed as follows: in the first

step, I use the portfolio-leverage time series (sorted on actual leverage) to parameter-

ize (15) and (16). After estimating target-leverage dynamics, I then determine how

mismeasured (by virtue of mismeasuring the underlying factors) the target needs to be

in the cross-sectional regressions for the patterns in the residual-based leverage sorts

to obtain. Without loss of generality, I simplify the analysis by examining two rather

than four portfolios: a “high-leverage” portfolio and a “low-leverage” portfolio. This

does not affect the results, since initial convergence and long-term persistence are still

evident with only two portfolios.

Using the actual leverage-based portfolios, I estimate four parameters in equations

(15) and (16): the cross-sectional error variance σ2
u in the leverage equation, and the

intercept ϕ0, slope coefficient ϕ1 and error variance σ2
ε in the equation for the AR(1)

process governing target leverage. I simulate equations (15) and (16) above for both

realized leverage and the target, and then find parameter values that minimize the sum

of the squared differences between actual portfolio leverage and simulated portfolio

leverage, i.e.,

min
Φ

∑
i

∑
t

(
PFlevsimit − PFlevactit

)2
(18)

where the parameter vector Φ = {σ2
u, ϕ0, ϕ1, σ

2
ε}, and PFlevit denotes the leverage of

portfolio i (i indexes high and low leverage) at time t. The parameter estimates are as

follows:

ϕ0 ϕ1 σε σu

Estimate 0.021 0.930 0.066 0.080

Std. Error (0.012) (0.009) (0.003) (0.010)

7If more than one explanatory factor is included, the target dynamics can be thought of as a linear

combination of AR(1) processes, which would result in an ARMA representation for the target (see

e.g., Granger and Newbold (1977)).
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The estimated coefficients are of reasonable magnitude, in line with what a pooled

regression would yield. In addition, simulating the actual leverage-based portfolio sorts

using the parameter values above provides a good fit to the real data, as shown in

Figure 4.

[Figure 4 about here.]

3.2 Estimating Measurement Error by Extracting the Mis-

measured Target

Having estimated the true leverage target l̂evit = βxit consistent with portfolios sorted

on actual leverage, I now extract a mismeasured leverage target l̂ev∗it consistent with the

residual-based portfolios. The mismeasured target allows us to compute the mismea-

sured residuals u∗it, which form the basis of the residual-based portfolio sorts because

u∗it = levit − l̂ev∗it (19)

Using a noisy determinant in the regression implies that the target leverage (i.e., the

regression’s predicted leverage value) is also mismeasured. As mentioned before, I

avoid explicitly modelling an explanatory variable xit, or x∗it in its mismeasured form,

but focus on the target instead. This approach highlights the intuition behind the

results.8 It is possible to recover the mismeasured target leverage l̂ev∗it, because we can

express it as a function of the true target:

Proposition 2. Suppose that leverage dynamics are given by equations (12) through

(14). Using a mismeasured explanatory variable x∗it in the cross-sectional leverage re-

gression will cause target leverage l̂ev∗it = E(lev∗it|x∗it) (the fitted regression value) to be

mismeasured as well. If the mismeasured target is expressed in terms of the true target

l̂evit by the following regression:

l̂ev∗it = α0 + α1l̂evit + eit (20)

then the parameters in (20) are functions of known data moments and the noise-to-

8The target-leverage substitution also improves identification, since no cross-sectional β-coefficient

needs to be estimated.
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signal ratio a of the mismeasured x∗it:

α0 = (1− α1)E(l̂evit) (21)

α1 =
1

1 + a
(22)

σ2
e = V ar(l̂evit)

a

(1 + a)2
(23)

a =
σ2
η

σ2
x

(24)

Proof. See Appendix C.

Proposition 2 states that knowledge of the true target dynamics, via the methodol-

ogy in Section 3.1, permits an explicit solution for the mismeasured target leverage in

(20). The unknown parameters α0, α1 and σ2
e are functions of known data moments and

a given ratio of measurement noise to cross-sectional variation σ2
η/σ2

x
= a. This ratio

can thus be used to indirectly quantify the amount of measurement error in equation

(14), and also allows for an explicit solution for the parameters in Proposition 2.

An observation about Proposition 2 is warranted: if measurement error is present

(σ2
η ≥ 0), then the variance of the mismeasured target is less than the variance of the

true target, i.e., V ar(l̂ev∗it) ≤ V ar(l̂evit) (see (64) in Appendix C for a proof). The

larger the amount of measurement error in the underlying leverage determinant, the

smaller the variation in estimated target leverage will be. In a univariate regression,

the attenuation in the estimated slope coefficient rises with the amount of measurement

error in the explanatory variable. This naturally results in a larger estimated intercept,

which makes intuitive sense: the “best” predicted value of the dependent variable in the

presence of an increasingly noisy explanatory variable simply approaches the dependent

variable’s unconditional mean, which does not vary over time.

This reasoning translates directly to the relationship between the estimated mismea-

sured target leverage and the true target, as given by (20). If the target were perfectly

measured, then α0 = 0, α1 = 1 and σ2
e = 0. As the measurement noise in the observed

explanatory variable increases, the mismeasured target will become more stable relative

to the true target: α0 > 0 and α1 < 1, while σ2
e will increase at first and then decrease

again. In the limit, with the signal-to-noise ratio of x∗it approaching 0, the mismeasured

target is constant with α0 = E(lev), α1 = 0, and σ2
e = 0.

While the mismeasured target will always be less variable than the true target,

it still equals the true target, on average: E(l̂ev∗) = E(l̂ev) (see (56) in Appendix

C for a proof). Intuitively, this is due to regression mechanics: the mean predicted
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value will equal the dependent variable’s unconditional mean, regardless of whether

there is measurement error in the explanatory variable. Naturally, this only holds in an

unconditional sense; if a given true xit is above its unconditional mean, the mismeasured

target will underestimate the true target and vice versa. Figure 5 illustrates this point

for various levels of the noise-to-signal ratio a. As a increases, the effect becomes more

visible. For instance, in Panel D with a = 1.25, when true target leverage is below its

unconditional mean of 0.27, the mismeasured target tends to be larger than the true

target, i.e., it is closer to the unconditional mean of the leverage variable.

[Figure 5 about here.]

I next recover the implied ratio a of measurement noise to cross-sectional variation

in the explanatory variable that minimizes the sum of the squared differences between

the simulated and actual portfolio-leverage levels, sorted on mismeasured residuals:

min
a

∑
i

∑
t

(
PFlevsimit − PFlevactit

)2
(25)

PFlevit denotes the average leverage of portfolio i, where i indexes high and low leverage

at time t. To do the portfolio sorts embedded in the above minimization, I first compute

the mismeasured target l̂ev∗it from the true target l̂evit via (20), and then solve equation

(19) for the residual u∗it. Figure 6 shows the results of this minimization.

[Figure 6 about here.]

The simulated residual-based portfolio sorts most closely match the empirical ones

with a noise-to-signal ratio of a = 1.42 (std. error = 0.12), i.e., the variance of the

measurement error needs to be 42% larger than the cross-sectional variation of the

true but unobserved explanatory variable x. Clearly, this amount of measurement

error seems large, but the sole factor x in this setup serves as a stand-in for all the

determinants of leverage. In a multivariate world, high levels of measurement error in

one variable can counterbalance low levels of measurement error in another.

Another consideration is that in the previous calibration, each portfolio received

an equal weighting. Weighting some observations more heavily than others would also

reduce the value of a. Furthermore, while a = 1.42 results in the best fit, even small

quantities of measurement error relative to the variance of the explanatory variable

produce a surprising amount of persistence in the residual-based sorts. Figure 7 shows

portfolio sorts at different levels of a. For instance, Panel D shows that a noise-to-

signal ratio as low as 0.75 still produces a good fit to the actual portfolios in year 5

and beyond. While large quantities of measurement error are needed to completely
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reproduce the stylized facts, much more moderate levels still produce a notable amount

of leverage persistence in the sorts. This reinforces the view that measurement error is

a contributing factor to persistence in residual-based portfolio sorts.

[Figure 7 about here.]

3.3 Multi-Variable Calibration with iid Measurement Error

I now turn to whether measurement error in explanatory variables similar to those

used by Lemmon, Roberts, and Zender (2008) is able to reproduce the leverage time

series of both the actual- and residual-based portfolio sorts. I focus on profitability;

tangibility (as a measure of how tangible a firm’s collateral assets are); the market-

to-book ratio (as a proxy for investment opportunities); and industry leverage (as a

measure of industry-specific leverage targets, in lieu of an industry fixed effect). Firm

size is excluded, since it is not stationary and thus would not conform to my setup of

modelling the explanatory variables as AR(1) processes.

The estimation by simulated method of moments proceeds in a similar fashion to

that in Section 3.2. In particular, the economy consists of simulated firms whose lever-

age dynamics are governed by the following system of equations:

levit = β′(1 xit)
′ + uit (26)

=
(
β0 βProf βTang βMB βIndLev

)


1

Profit

Tangit

MBit

IndLevit


+ uit (27)

xit = φ0 + φ1xit−1 + εit (28)

=


φProf0

φTang0

φMB
0

φIndLev0

+


φProf1 0 0 0

0 φTang1 0 0

0 0 φMB
1 0

0 0 0 φIndLev1

xit−1 +


εProfit

εTangit

εMB
it

εIndLevit

 (29)

x∗
it = xit + ηit (30)

The errors are all normally distributed with uit ∼ N(0, σ2
u), εit ∼ N(0,Σε), and

ηit ∼ N(0,Ση).9 Leverage is determined in the cross-section by an intercept and the

9Vectors and matrices are denoted by bold letters.
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four explanatory factors, which are all modelled as AR(1) processes. Firms differ in

terms of the realization of a particular variable, but the coefficients in the model are

the same for all firms. The true explanatory variable vector xit is latent; the observable

x∗
it is measured with error ηit: The explanatory variables are imperfect proxies for the

true economic fundamentals driving leverage.

The covariance matrix of the innovations of the AR(1) processes Σε is diagonal, as

is the covariance matrix of the measurement-error terms Ση:

Σε =


σ2
εProf

0 0 0

0 σ2
εTang

0 0

0 0 σ2
εMB

0

0 0 0 σ2
εIndLev

 (31)

Ση =


σ2
ηProf

0 0 0

0 σ2
ηTang

0 0

0 0 σ2
ηMB

0

0 0 0 σ2
ηIndLev

 (32)

There are a total of 22 unknown parameters in this formulation: the intercepts, slopes,

and error variances of the AR(1) process (12 parameters), the cross-sectional betas and

the error variance σ2
u (6 parameters), and the measurement-error variances (4 parame-

ters).

To reduce the number of free parameters in the model, the unconditional means of

the noisy explanatory variables are inferred directly from the data. This is possible since

mismeasured and latent explanatory variables have the same mean: µx∗ = E(x∗
it) =

E(xit + ηit) = E(xit) = µx. This allows me to express the intercepts of the latent

AR(1) processes as functions of the empirical means of the respective variables and

estimates of φ1, which is a free parameter matrix:

φ0 = (I4 − φ1)µx (33)

= (I4 − φ1)µx∗ (34)

I4 denotes a 4× 4 identity matrix. In fact, several other parameters could be inferred

directly from the variance of leverage V ar(lev), and from the variance matrix of the

noisy explanatory variables Σx∗ .
10 However, forcing the constraints that the model

imposes on these parameters to hold exactly is too restrictive and results in a poor fit.

Instead, the variances are added as moment conditions, which results in the simulated

values being close to the data values without the need to match them exactly.

10We could relate the variance matrix for the AR(1) innovations Σε to the variance of the noisy
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3.3.1 Identification

To reduce the dimensionality of the parameter space, I calculate the intercepts for

the autoregressive processes directly from the data via (34). This pares down the

free structural parameters to a total of 18: the matrix φ1, which contains the slope

coefficients for the explanatory variables, the innovation standard deviation matrix Σε,

and the measurement-error variance matrix Ση. Furthermore, the parameter vector β,

which governs the cross-sectional relationship between leverage and its determinants,

along with the standard deviation of the cross-sectional residual σu, has to be estimated.

The structural parameters underlying the latent processes are obtained by matching

simulated sample moments to data moments. Broadly speaking, the data moments con-

sist of sample statistics for leverage and the explanatory variables, panel and time-series

regression parameters, and the portfolio-leverage levels of the Lemmon, Roberts, and

Zender (2008) portfolio sorts. Since I assume that the actual data on explanatory vari-

ables are contaminated by measurement error, all data moments involving explanatory

variables are mismeasured as well. In particular, I use the following moments:

i. The intercepts φ∗0 and slope coefficients φ∗1 for each explanatory variable (i.e., prof-

itability, tangibility, market-to-book and industry leverage), which are obtained by

regressing each observed mismeasured explanatory variable on its lagged value (8

moments):

x∗it = φ∗0 + φ∗1x
∗
it−1 + ε∗it (37)

ii. The variance of each mismeasured explanatory variable σ2∗
x , and the variance of

leverage σ2
lev (5 moments).

iii. The cross-sectional coefficients β∗ from a regression of leverage on the noisy deter-

minants (5 moments):

levit = β∗′(1 x∗′
it ) + u∗it where (38)

β∗′ = (β∗0 β∗Prof β∗Tang β∗MB β∗IndLev) (39)

and x∗
it is the vector of mismeasured explanatory variables.

factors Σx∗ , and the variance of the regression residual σ2
u to the variance of leverage V ar(lev) via:

Σε =
(
I4 − φ1

′φ1

)
Σx

=
(
I4 − φ1

′φ1

)
(Σx∗ −Ση) (35)

σ2
u = V ar(lev)− βΣxβ

′ (36)
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iv. The time series of portfolio-leverage levels after sorting on both actual and unex-

pected leverage (80 moments in total). A time series consists of 20 portfolio-leverage

levels for each “high-leverage” and “low-leverage” portfolio.

For both actual and simulated data, the moments are collected in vectors mact and

msim, respectively. The structural parameters collected in the vector

Φ = (φ1 Σε Ση β σu) are found by minimizing the sum of the squared differences

between actual moments and simulated moments:

min
Φ

(mact −msim)′(mact −msim) (40)

This minimization makes the simulated moments as close to their actual counterparts

as possible by picking the “best” structural parameter values.

3.3.2 Results

The estimated structural parameters of this procedure, along with their standard er-

rors,11 are listed in Table 2. Table 3 presents a comparison of empirical data moments,

their simulated counterparts based on mismeasured variables, and moments that are

based on the estimated true latent parameters. Table 4 gives two estimates of the ra-

tio of measurement noise to state noise for each simulated explanatory variable. The

first estimate is the ratio of the measurement-error variance to the variance of the la-

tent underlying variable, while the second estimate is the ratio of the measurement-error

variance to the variance of the observed variable, which thus includes the measurement-

error variance in the denominator. Finally, Figure 8 shows the portfolio sorts on actual

and residual leverage, which are obtained with the estimated parameter values.

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

[Figure 8 about here.]

For both the tangibility and industry-leverage ratios, the calibrated values of the

latent processes are very close to the empirical data values. As measured by the AR(1)

11The standard errors are bootstrapped: First, all empirical moments are recalculated for subsets

of the Compustat universe. I then estimate structural parameters for each of the subsamples. The

standard errors are given by the standard deviations of the estimated structural parameters.
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parameter and shown in Table 3, the estimated persistence for tangibility is 0.936

(empirical data value of 0.952), while it is 0.891 for industry leverage (empirical data

value of 0.908). The estimated magnitude of the measurement-error standard deviation

ση is small in both instances, and well below the standard deviation of the innovation σε

in the respective AR(1) process (see Table 2). This results in a ratio of measurement-

error variance to latent-variable variance σ2
η/σ

2
x of 0.021 for tangibility and 0.018 for

industry leverage (see Table 4, column (1)). Similar values for the measurement-error

ratio are obtained if the variance of the observed explanatory variable is used instead.

Consistent with the small magnitude of the estimated measurement error terms, the

structural β-coefficients for both variables are close to their empirical counterparts (see

Table 3).

Table 3 shows that latent profitability (φ1 = 0.832, see “Struc. Value” column) is

more persistent than observed profitability (φ∗1 = 0.775). The depressed observed φ∗1

coefficient is caused by measurement error in observed profitability with an estimated

standard deviation of ση = 0.105 (see Table 2), which also induces a slight downward

bias in the cross-sectional β∗. Relative to tangibility and industry leverage, the mea-

surement error ratios for profitability have increased to 0.090 and 0.083, respectively

(see Table 4). These values are still low; for example, the latter implies that only 8.3%

of the variation in observed profitability is due to measurement error.

The most interesting result obtains for the market-to-book ratio. The latent AR(1)

process has an estimated value of φ1 = 0.931, while the empirical process has a value of

φ∗1 = 0.534 (see Table 3). The simulated φ∗1 value, obtained by regressing the simulated

mismeasured market-to-book ratio on its lagged value, is 0.530, which is very close to

the empirical estimate. The discrepancy between latent and observed φ1 is caused by

a measurement-error standard deviation that is large when compared with that for the

other variables. Its value is ση = 1.476, which exceeds the standard deviation of the

innovation term in the AR(1) process σε = 0.603, as shown in Table 2. The resulting

measurement-error ratio is σ2
η/σ

2
x = 0.802, which drops to σ2

η/σ
2
x∗ = 0.445 if we use the

variance of the observed market-to-book ratio in the denominator (see Table 4). This

latter value implies that 44.5% of the observed variation in the market-to-book ratio

is driven by noise. While this seems large, the market-to-book ratio as a proxy for

investment opportunities can, ex ante, be expected to be noisy. Erickson and Whited

(2006) state that “all observable measures or estimates of the true incentive to invest

[...] are likely to contain measurement error.” Using a classical errors-in-variables model

with the investment-to-capital ratio on the LHS and average q on the RHS, Erickson

and Whited (2006) report that approximately 59% of the variation in book-value-based

measures of Tobin’s q is driven by noise, and only 41% is driven by variation in the
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true unobservable q. This is consistent with my results, where 55% of the variation in

the market-to-book ratio is due to variation in true q.

My estimates of the structural parameters produce a variance in the observed

market-to-book ratio of 4.895, which is equal to its empirical counterpart. Thus, the

results are not driven by an unnaturally high total variance in the market-to-book ratio.

In the simulated cross-section, the true latent β-coefficient for the market-to-book ratio

is -0.105, which is larger than the empirical value of -0.006 (Table 3). The simulated

mismeasured observed value for βMB is -0.058. My results suggest that a market-to-

book ratio, which is a poor proxy for true investment opportunities, plays an important

role in the persistence of the residual-based portfolio sorts. Since an option to invest is

riskier than the investment itself, firms with a high true q would optimally choose to

carry lower amounts of leverage. However, this effect is obscured in the data owing to

the high amount of measurement error inherent in the market-to-book ratio.

Overall, the estimation produces sensible parameter values, and the simulated mo-

ments closely resemble their empirical data counterparts, as a comparison of the “Data

Value” and “Sim. Value” columns in Table 3 reveals. Finally, Figure 8 shows the re-

sults of the portfolio sorts. Using the estimated values of the structural parameters in

Table 2 produces a close fit between empirical and simulated portfolio leverage time

series, regardless of whether the sort is done on actual or residual leverage. While the

simulated residual-based portfolios exhibit less dispersion than their empirical coun-

terparts in years two to five, they track the empirical time series closely in the other

time periods. This shows that low levels of measurement error in profitability, size and

industry leverage, coupled with a larger, yet realistic, amount of measurement error

inherent in using book-value-based proxies of Tobin’s q offers a potential explanation

of the documented persistence in leverage portfolios.12

4 Conclusion

Persistence in residual-based leverage portfolios is a well-documented fact. While this

persistence can result from the omission of either a firm fixed effect or time-varying

variables, I show that it also arises when slow-moving explanatory variables in a lever-

age regression are measured with error. Sorting firms into portfolios based on these

regression residuals will exhibit similar portfolio-leverage persistence as sorting firms

into portfolios based on actual leverage.

12In unreported results, model fit improves by allowing for a slight autocorrelation in the

measurement-error terms themselves.
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Being able to predict future leverage with the regression residuals implies that tar-

get leverage is mismeasured. I find that if the leverage target is modelled as being

determined by a single composite factor of a number of possible trade-off theory vari-

ables, then the measurement-error variance of this latent factor needs to be 142% of its

cross-sectional variance to reproduce the stylized empirical facts. This number is large,

but is nonetheless a useful measure, since it can be interpreted as an aggregate estimate

of how mismeasured the explanatory variables would need to be. However, even much

lower amounts of measurement error still produce remarkably persistent residual-based

portfolio sorts. Therefore, even if measurement error alone is not sufficient to fully ac-

count for the persistence of leverage in the setting of regression-residual-based portfolio

sorts, it is nonetheless likely to be an important contributor.

I also examine measurement error in several important explanatory variables, namely

the firm’s profitability, the tangibility of its assets, the market-to-book ratio, and indus-

try leverage. I find that low quantities of measurement error in profitability, tangibility

and industry leverage, coupled with a measurement-error variance equal to about 80%

of the cross-sectional variation in the market-to-book ratio, produce a good fit of sim-

ulated sample data moments to empirical moments. This level of measurement error

in the market-to-book variable, which proxies for Tobin’s q, is consistent with other

studies such as Erickson and Whited (2006), and suggests that unobserved investment

opportunities play an important role in explaining leverage ratios, and, hence, in the

persistence of the residual-based portfolio sorts.

The focus of this paper is on capital structure. However, portfolio sorts are also a

popular tool to evaluate the returns from trading strategies, and to test asset pricing

models. Measurement quality is an important consideration for the risk factors in these

models, so my work also has implications for the asset pricing applications of portfolio

sorts.
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Appendices

A Variable Definitions

Data are taken from the annual Compustat database between 1965 and 2003. Financial

firms and companies with missing asset or debt values are excluded from the sample.

Leverage is constrained to lie in the closed unit interval. Size, profitability, tangibility

and the market-to-book ratio are winsorized at the 1st and 99th percentiles. The con-

struction of each variable is as follows:

Leverage =
Short-Term Debt [34] + Long-Term Debt [9]

Book Assets [6]

Total Debt = Short-Term Debt + Long-Term Debt

Size = ln(Book Assets [6])

Profitability =
Operating Income before Depreciation [13]

Book Assets [6]

Tangibility =
PPE [13]

Book Assets [6]

Market Equity = Share Price [199] * Shares Outstanding [54]

Market-to-Book =
Market Equity + Total Debt + Pref. Stock Liq. Value [10] - Def. Taxes [35]

Book Assets [6]
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B Derivations

B.1 Attenuation Bias

Intermediate Steps:

β̂∗ =
cov(x∗it, levit)

σ2
x∗it

=
E [(xit + ηit)(βxit + uit)]− E(xit + ηit)E(βxit + uit)

E[(xit + ηit)2]− E(xit + ηit)2

=
βE(x2

it)− βE(xit)
2

E(x2
it) + Eη2

it − E(xit)2

= β
σ2
xit

σ2
xit

+ σ2
ηit

(41)

B.2 Conditional Expectation of Leverage Under Measurement

Error

Expected portfolio leverage, conditional on sorting on the mismeasured regression resid-

ual, is:

E[levit+1|û∗it] = βφE[xit|û∗it] + βE[εit+1|û∗it] + E[uit+1|û∗it] (42)

The second and third expectations on the RHS are equal to zero. E[εit+1|û∗it] = 0

since next period’s innovation in the explanatory variable is independent of this year’s

estimated residual. Similarly, next period’s true residual in the leverage regression is

independent of this period’s estimated residual, so E[uit+1|û∗it] = 0. The first expectation

on the RHS is not equal to 0, however. The residual û∗it contains information about

the true xit, so E(xit|û∗it) 6= E(xit). To see this, assume that xit and û∗it are normally

distributed random variables. Start with a scalar version of the conditional expectation

of multivariate normal random variables: 13

E(xit|û∗it) = E(xit) +
Cov(xit, û

∗
it)

V ar(û∗it)
[û∗it − E(û∗it)] (43)

Now express û∗it as û∗it = levit−β̂∗x∗it = βxit+uit−β̂∗(xit+ηit) = (β−β̂∗)xit−β̂∗ηit+uit
13Let x1 . . . xN be multivariate normal, and collect (x1 . . . xm)′ in a vector xa, and (xm+1 . . . xN )′ in

a vector xb (1 ≤ m ≤ N − 1). Then stack the vectors and let x =

(
xa

xb

)
with mean

(
µa

µb

)
and

covariance matrix Σ =

(
Σa Σab

Σba Σb

)
. Then E(xa|xb) = µa + ΣabΣ

−1
b (xb − µb), where ΣabΣ

−1
b can

be interpreted as the coefficients of a regression of xa on xb (see, for example, Greene (2003)).
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and substitute:

E(xit|û∗it) = E(xit) +
E
[
(β − β̂∗)x2

it − β̂∗ηitxit + uitxit

]
− E(xit)E[(β − β̂∗)xit]

E
[
(β − β̂∗)2x2

it + (β̂∗)2η2
it + u2

it

]
−
[
(β − β̂∗)E(xit)

]2 û∗it

= E(xit) +
(β − β̂∗) [E(x2

it)− E(xit)
2]

(β − β̂∗)2[E(x2
it)− E(xit)2] + (β̂∗)2E(η2

it) + E(u2
it)
û∗it

= E(xit) +
(β − β̂∗)σ2

xit

(β − β̂∗)2σ2
xit

+ (β̂∗)2σ2
ηit

+ σ2
uit

û∗it (44)

Expanding the quadratic in the denominator and substituting β̂ = β
σ2
xit

σ2
xit

+σ2
ηit

gives

E(xit|û∗it) = E(xit) +
(β − β̂∗)σ2

xit

(β2 − 2ββ̂∗ + (β̂∗)2)σ2
xit

+ (β̂∗)2σ2
ηit

+ σ2
uit

û∗it

= E(xit) +
(β − β̂∗)σ2

xit

β(β − 2β̂∗)σ2
xit

+ β̂∗β
σ2
xit

σ2
xit

+σ2
ηit

(σ2
xit

+ σ2
ηit

) + σ2
uit

û∗it

= E(xit) +
(β − β̂∗)σ2

xit

β(β − β̂∗)σ2
xit

+ σ2
uit

û∗it

= E(xit) + b · û∗it; b =

(
β +

σ2
uit

(σ2
xit

+ σ2
ηit

)

βσ2
xit
σ2
ηit

)−1

(45)

In my setup, E[xit] = 0, so the expectation of xit conditional on the regression

residual û∗it is

E(xit|û∗it) = b · û∗it =

[
β +

σ2
uit

β

(
1

σ2
ηit

+
1

σ2
xit

)]−1

û∗it (46)

Finally, substitute (46) into (9) to obtain an expression for the conditional expec-

tation for next period’s leverage:

E(levit+1|û∗it) = βφb · û∗it = φ

[
1 +

σ2
uit

β2

(
1

σ2
ηit

+
1

σ2
xit

)]−1

︸ ︷︷ ︸
= c≥ 0

û∗it (47)

B.3 Residual Persistence

As before, express the regression residual as

û∗it+1 = (β − β̂∗)xit+1 − β̂∗ηit+1 + uit+1

= (β − β̂∗)(φxit + εit)− β̂∗ηit+1 + uit+1 (48)
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Then

E(û∗it+1|û∗it) = (β − β̂∗) [φE(xit|û∗it) + E(εit|û∗it)]− β̂∗E(ηit+1|û∗it) + E(uit+1|û∗it)

= (β − β̂∗)φE(xit|û∗it) =
[
φ(β − β̂∗)b

]
û∗it (49)

C Implied Target Leverage Derivations

Derivation of α0

Begin with the relationship between the mismeasured target and the true target:

l̂ev∗ = α0 + α1l̂ev + e (50)

Taking expectations:

E(l̂ev∗) = α0 + α1E(l̂ev) + 0 (51)

The mismeasured target and the true target are equal, on average, i.e., E(l̂ev∗) = E(l̂ev).

To see this, start with the regression specification where the explanatory variable x∗ is

measured with error (* denotes that a variable or parameter is affected by measurement

error):

lev = β∗0 + β∗1x
∗ + ε∗ (52)

Taking expectations:

E(lev) = β∗0 + β1
σ2
x

σ2
x + σ2

η

E(x+ η) + E(ε∗)

= β∗0 +
σ2
x

σ2
x + σ2

η

E(lev) (53)

Therefore,

β∗0 = E(lev)

(
1− σ2

x

σ2
x + σ2

η

)
(54)

Mismeasured target leverage is given by

l̂ev∗ = β∗0 + β∗1x
∗ (55)

Substituting for β∗0 and β∗1 shows that the mismeasured target equals the true target

(and, hence, actual leverage), on average:

E(l̂ev∗) = E(lev)

(
1− σ2

x

σ2
x + σ2

η

)
+

σ2
x

σ2
x + σ2

η

β1E(x+ η)

= E(lev)

(
1− σ2

x

σ2
x + σ2

η

)
+

σ2
x

σ2
x + σ2

η

E(lev)

= E(lev) (56)
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Substituting (56) into (51) then yields an expression for α0:

E(l̂ev∗) = E(l̂ev) = α0 + α1E(l̂ev) + 0

α0 = (1− α1)E(l̂ev) (57)

Derivation of α1

Since (50) above is a regression equation:

α1 =
cov(l̂ev, l̂ev∗)

V ar(l̂ev)
(58)

Expanding the numerator:

cov(l̂ev, l̂ev∗) = Cov (β1x, β
∗
0 + β∗1(x+ η))

= Cov

(
β1x,E(lev)

(
1− σ2

x

σ2
x + σ2

η

)
+ β1

σ2
x

σ2
x + σ2

η

(x+ η)

)
= Cov

(
β1x, β1

σ2
x

σ2
x + σ2

η

x

)
+ Cov

(
β1x, β1

σ2
x

σ2
x + σ2

η

η

)
︸ ︷︷ ︸

=0

= β2
1

σ2
x

σ2
x + σ2

η

V ar(x) (59)

Substituting:

α1 =
cov(l̂ev, l̂ev∗)

V ar(l̂ev)
=
β2

1
σ2
x

σ2
x+σ2

η
V ar(x)

β2
1V ar(x)

=
σ2
x

σ2
x + σ2

η

(60)

Finally, let a =
σ2
η

σ2
x
, and substitute into (60):

α1 =
1

1 + a
(61)

Derivation of σ2
e

Start again with (50), and compute the variance:

V ar(l̂ev∗) = α2
1V ar(l̂ev) + σ2

e (62)

We can calculate V ar(l̂ev) from calibrating the true target to resemble the leverage-

sorted portfolios. To compute V ar(l̂ev∗), start again with

l̂ev∗ = β∗0 + β∗1x
∗ = β∗0 + β1

σ2
x

σ2
x + σ2

η

(x+ η) (63)
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Then compute the variance:

V ar(l̂ev∗) = V ar

(
β1

σ2
x

σ2
x + σ2

η

(x+ η)

)
=

(
β1

σ2
x

σ2
x + σ2

η

)2

(σ2
x + σ2

η)

= β2
1

(σ2
x)

2

σ2
x + σ2

η

= V ar(l̂ev)
σ2
x

σ2
x + σ2

η︸ ︷︷ ︸
≤V ar(l̂ev)

(64)

Substitute (64) into (62), and solve for σ2
e :

V ar(l̂ev)
σ2
x

σ2
x + σ2

η

= α2
1V ar(l̂ev) + σ2

e (65)

Again, express measurement error as a fraction of the variability of the true x: σ2
η = aσ2

x.

We can now solve for the implied variance of the residual e as a function of the amount

of measurement error present:

σ2
e = V ar(l̂ev)

[
σ2
x

σ2
x + σ2

η

−
(

σ2
x

σ2
x + σ2

η

)2
]

= V ar(l̂ev)

[
1

1 + a
− 1

(1 + a)2

]
= V ar(l̂ev)

a

(1 + a)2
(66)
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Figures

Figure 1: Average Leverage of Book Leverage Portfolios

Using the 1965-2003 sample of nonfinancial Compustat firms, I sort firms into 4 portfolios.

In Panel A, the sort is based on the firm’s actual level of book leverage. In Panel B, the

sort is based on residuals from a regression of book leverage on lagged size, market-to-book,

profitability, tangibility and mean industry leverage. In Panel C, a firm fixed effect (FE) is

added to the other explanatory variables. I then compute the mean leverage of each portfolio

for the next 20 years, keeping its composition constant. I repeat this procedure for all years

until the end of the sample period. The resulting 38 portfolio time series are then averaged

in event time. Variables are defined in Appendix A.

Panel A: Sort on Actual Leverage

Panel C: Sort on Unexpected Lev. with FE

Panel B: Sort on Unexpected Leverage
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Figure 2: Simulated Portfolio Convergence

The two panels show the evolution of leverage portfolios where simulated firms are sorted into
either a high- or a low-leverage portfolio. In Panel A, the sort is based on actual leverage at
time 0, while in Panel B, it is based on unexpected leverage at time 0. Unexpected leverage is
the residual obtained from a cross-sectional regression of leverage on its determinant, which
is estimated each year. The firms are kept in their respective portfolios for 20 years. The
sort is carried out every year for 40 years, giving rise to 40 time series, each being 20 years
long. The time series are then averaged in event time within each portfolio, resulting in the
graphs above. Individual firm time series are produced as follows: each period, leverage is
determined as a function of an explanatory variable x:

levit = βxit + uit (67)

where β = 1 and uit ∼ N(0, 0.25). The leverage determinant xit follows an AR(1) process:

xit = φxit−1 + εit (68)

with φ = 0.85 and εit ∼ N(0, 1). The time series for x is simulated for 160 time periods, of

which only the last 60 are retained to approximate a steady state. I simulate a cross-section

of 5,000 firms.
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Figure 3: Comparison of Portfolio-Leverage Dispersion as a Function of Measure-
ment Error

The simulation setup is as before, e.g., in Figure 2, but only the mismeasured regressor x∗it is
available. I simulate the following system 5,000 times:

levit = βxit + uit (69)

xit = φxit−1 + εit (70)

x∗it = xit + ηit (71)

where β = 1, uit ∼ N(0, 0.25), φ = 0.85, and εit ∼ N(0, 1). The available regressor x∗ is

imperfectly measured. I perform the residual-based portfolio sorts as before, for three levels

of measurement error: ση ∈ {0, 0.5, 1}. The ratio of measurement noise to state noise in

the regressor is thus also ση/σε ∈ {0, 0.5, 1}. The leverage-based portfolio sort (solid line) is

included for reference. The average portfolio-leverage levels are shown over an event horizon

of 20 time periods.
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Figure 4: Data-Implied Target Leverage Dynamics

I model leverage lev as a function of its target l̂ev, which in turn is an AR(1) process:

levt = l̂evt + ut (72)

l̂evt = ϕ0 + ϕ1 l̂evt−1 + εt (73)

The red crosses correspond to actual portfolio-leverage levels. I simulate a panel of 1,000
firms, and choose parameter values for the system above such that the simulated data most
closely resemble the actual data points by minimizing the sum of the squared deviations:

min
Φ

∑
i

∑
t

(
PFlevsimit − PFlevactit

)2
(74)

where i indexes whether a data point belongs to a high- or low-leverage portfolio at time t,
and the parameter vector Φ = {σ2

u, ϕ0, ϕ1, σ
2
ε}. The parameters are, respectively: the cross-

sectional error variance in (72), as well as the intercept, slope and error variance for the AR(1)
process governing target leverage in (73). The estimates are as follows:

ϕ0 ϕ1 σε σu
Estimate 0.021 0.930 0.066 0.080

Std. Error (0.012) (0.009) (0.003) (0.010)
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Figure 5: Sample Mismeasured Target-Leverage Paths

I first simulate a true target based on the parameters recovered via (18): Φ = {ϕ0 =
0.021, ϕ1 = 0.93, σε = 0.066, σu = 0.080}. The mismeasured target is then given by

l̂ev∗ = α0 + α1 l̂ev + e (75)

α0 = (1− α1)E(l̂ev) (76)

α1 =
1

1 + a

σ2
e = V ar(l̂ev)

a

(1 + a)2
(77)

The four panels show sample leverage paths for different levels of the noise-to-signal ratio

a =
σ2
η

σ2
x
. The true target is the same in all panels.
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Figure 6: Implied Measurement Error from Residual-Based Sorts

The figure shows the implied ratio of measurement noise to variation in the true explanatory
variable x. After parameterizing the dynamics of the true target, the mismeasured target l̂ev∗

can be backed out via

l̂ev∗ = α0 + α1 l̂ev + e (78)

α0 = (1− α1)E(l̂ev) (79)

α1 =
1

1 + a

σ2
e = V ar(l̂ev)

a

(1 + a)2
(80)

The red crosses correspond to actual portfolio-leverage levels. I simulate a panel of 1,000 firms,
and choose the noise-to-signal ratio a = σ2

η/σ
2
x for the above system such that the simulated

data most closely resemble the actual data points by minimizing the sum of squared deviations:

min
a

∑
i

∑
t

(
PFlevsimit − PFlevactit

)2
(81)

where i indexes whether a data point belongs to a high- or low-leverage portfolio at time

t. The minimum of the objective function is reached at a = 1.42 (std. error = 0.12). The

resulting fit is shown above.
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Figure 7: Residual-Sorted Leverage Portfolios at Different Implied Levels of Mea-
surement Error

I simulate the set of equations in Figure 6 for different values of the noise-to-signal ratio

a = σ2
η/σ

2
x. Firms are sorted into portfolios based on residuals.
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Figure 8: Average Leverage of Portfolios Sorted on Simulated “Actual” and “Un-
expected” Leverage with iid Measurement Error

Panel A shows the evolution of the high- and low-leverage portfolios, when firms are sorted

into portfolios based on simulated leverage. Firms are simulated using the parameters from

Table 2, which are obtained by the calibration described in Section 3.3. Every period, simu-

lated firms are sorted into either a high- or low-leverage portfolio, whose composition is held

constant for 20 time periods. The figure shows the average leverage of the simulated portfolios

in each year (solid and dashed lines). The simulated portfolios closely resemble the real data,

depicted by the red crosses.

Panel B shows the results of doing the residual-based sort: leverage is regressed on mis-

measured profitability, tangibility, market-to-book and industry leverage, and firms are then

sorted into portfolios on the basis of the regression residual. The portfolio-leverage levels in

years 5 and onward again closely resemble the real data, while the initial dispersion is lower

than in the data.
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Tables

Table 1: Summary Statistics

Summary statistics over the sample period 1965-2003 for non-financial firms on Com-
pustat. Variable definitions are provided in Appendix A.

Variable Mean Minimum Median Maximum Std Dev
lev 0.27 0.00 0.24 1.00 0.21

profit 0.05 -2.37 0.11 0.44 0.32
tang 0.34 0.00 0.28 0.93 0.25
MB 1.73 0.18 1.00 21.21 2.45

LnSize 4.18 -1.47 4.03 10.45 2.38
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Table 2: Estimated Structural Parameters, with iid Measurement Error

This table lists the structural parameters governing the time-series and cross-sectional prop-

erties of the latent variables profitability, tangibility, market-to-book, and industry leverage

in the four-variable calibration modelled via equations (26) through (32), as well as standard

errors. The parameter values are found by minimizing the squared distance between simulated

sample moments and actual data moments. The moments chosen are described in Section

3.3.1.

Variable Parameter Estimate Std. Error
Profitability φ1 0.832 0.013

σε 0.194 0.007
ση 0.105 0.006

Tangibility φ1 0.936 0.011
σε 0.090 0.011
ση 0.038 0.009

Market-to-book φ1 0.931 0.011
σε 0.603 0.059
ση 1.476 0.067

Industry leverage φ1 0.891 0.009
σε 0.039 0.010
ση 0.012 0.004

Cross-sectional β0 0.129 0.014
parameters βProf -0.070 0.016

βTang 0.115 0.011
βMB -0.105 0.007
βIndLev 0.859 0.031
σu 0.082 0.005
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Table 3: Actual and Simulated Moments, with iid Measurement Error

This table lists actual data moments in the “Data Value” column, their simulated counter-

parts (excluding the portfolio-leverage levels) in the “Sim. Value” column, and the latent

structural values in the “Struc. Value” column. The simulated moments are computed from

simulated mismeasured variables using the estimated structural parameters from Table 2, and

are described in Section 3.3.1. The latent structural values are obtained with the estimated

structural parameter values from Table 2, and are again included here for ease of comparison.

Variable Parameter Data Value Sim. Value Struc. Value
Profitability φ∗0 0.009 0.009 0.007

φ∗1 0.775 0.764 0.832
σ2∗
x 0.132 0.134 0.123

Tangibility φ∗0 0.017 0.031 0.023
φ∗1 0.952 0.916 0.936
σ2∗
x 0.057 0.067 0.066

Market-to-book φ∗0 0.616 0.616 0.092
φ∗1 0.534 0.530 0.931
σ2∗
x 4.895 4.895 2.717

Industry leverage φ∗0 0.028 0.036 0.033
φ∗1 0.908 0.879 0.891
σ2∗
x 0.007 0.008 0.008

Cross-sectional β∗0 0.013 0.077 0.129
parameters β∗Prof -0.066 -0.063 -0.070

β∗Tang 0.099 0.112 0.115
β∗MB -0.006 -0.058 -0.105
β∗IndLev 0.835 0.834 0.859

Leverage σ2
lev 0.034 0.044 0.044
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Table 4: Measurement-Error Ratio with iid Measurement Error

For each explanatory variable, column (1) shows estimates of the ratio of measurement noise

σ2
η to variance in the latent explanatory variable σ2

x, while column (2) shows the ratio of mea-

surement noise σ2
η to total variance σ2

x∗ . The total variance is the variance of the mismeasured

observed variable and thus includes the measurement-error variance. The values shown are

computed with the structural parameter values in Table 2, which minimize the calibration’s

sum of squared errors.

(1) (2)
σ2
η/σ

2
x σ2

η/σ
2
x∗

Profitability 0.090 0.083
Tangibility 0.021 0.021
Market-to-book 0.802 0.445
Industry leverage 0.018 0.018
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