# "Making Monetary Policy by Committee" by Alan Blinder

# Discussion by Francisco J. Ruge-Murcia

University of Montréal

# Motivation

Most central banks use a committee structure to formulate policy (79 out of 88 central banks in Fry *et al.*, 2000)

 Understanding how committees work is crucial to understand monetary policy making

# **Outline of the Paper**

• Discusses experimental evidence that committees are superior to individuals

Carefully documents institutional heterogeneity in monetary policy committees

# Heterogeneity

- Monetary policy committees differ in
  - 1) Degree of consensus
  - 2) Role of the chairman
  - 3) Voting procedures
  - 4) Size
  - 5) Composition
  - 6) Appointment procedure

• From the normative perspective, this observation begs the question of what is the optimal committee design

• For example, recent research by Erhart and Vasquez-Paz (2007) and Beger and Nitsch (2008) estimate the optimal committee size

## **Committees vs. Individual Decision Making**

• Experiments by Blinder and Morgan (2005 and 2007) and Lombardelli, Proudman and Talbot (2005) present evidence that committees outperform individual decision makers

 In this discussion, I will argue that committee decision making also explains data on policy decisions much better (I will draw on Riboni and Ruge-Murcia, 2007)

### **The Economy**

Private sector is described by

$$\pi_{t+1} = \pi_t + \alpha_1 y_t + \varepsilon_{t+1}$$
  

$$y_{t+1} = \beta_1 y_t - \beta_2 (i_t - \pi_t) + \eta_{t+1}$$

where

$$\varepsilon_t = \gamma u_{t-1} + u_t$$
$$\eta_t = \zeta v_{t-1} + v_t$$

Innovations are Normal white noises

### **Case 1: A Single Central Banker**

- Selects nominal interest rate
- Utility function is

$$E_{\tau}\left(\sum_{t=\tau}^{\infty}\delta^{\tau-t}L(\pi_t)\right)$$

where

$$L(\pi_t) = \frac{-\exp(\mu(\pi_t - \pi^*)) + \mu(\pi_t - \pi^*) + 1}{\mu^2}$$

• See Figure 1

Figure 1: Instantaneous Utility Function





### **Policy Outcome**

Utility maximization subject to AD and Phillips curves delivers a Taylor rule

$$i_t = a + b\pi_t + cy_t + \zeta_t$$

where

$$a = -\left(\frac{1}{\alpha_1\beta_2}\right)\pi^* + \left(\frac{\mu}{2\alpha_1\beta_2}\right)\sigma_{\pi}^2$$
$$b = 1 + \frac{1}{\alpha_1\beta_2}, \quad c = \frac{1+\beta_1}{\beta_2}$$
$$\zeta_t = \left(\frac{1}{\alpha_1\beta_2}\right)(\gamma u_t + \varsigma v_t)$$

# Implications

- Linear relation between interest rates and fundamentals
- No endogenous interest rate autocorrelation
- No status quo bias and lots of policy changes

### **Estimation**

Since

$$i_t = a + b\pi_t + cy_t + \zeta_t,$$

it follows that

$$Pr(i_t|i_{t-1},\pi_t,y_t) = \frac{1}{\sigma}\phi\bigg(\frac{i_t-a-b\pi_t-cy_t}{\sigma}\bigg),$$

• Then, the log likelihood function is

$$L(\mathbf{\phi}) = -T\sigma + \sum_{\forall i_t} \log \phi \left( \frac{i_t - a - b\pi_t - cy_t}{\sigma} \right),$$

where  $\boldsymbol{\varphi} = \{a, b, c, \sigma\}$ 

### **Case 2: A Monetary Policy Committee**

Selects nominal interest rate in every meeting

- *N* members indexed by j = 1, ..., N, where *N* is an odd integer
- The utility function of member j is

$$E_{\tau}\left(\sum_{t=\tau}^{\infty}\delta^{\tau-t}L_{j}(\pi_{t})\right)$$

where

$$L_j(\pi_t) = \frac{-\exp(\mu_j(\pi_t - \pi^*)) + \mu_j(\pi_t - \pi^*) + 1}{\mu_j^2}$$

### **Policy Preferred by Member** *j*

• Member *j*'s preferred policy is

$$i_{j,t}^* = a_j + b\pi_t + cy_t + \zeta_t$$

where

$$a_{j} = -\left(\frac{1}{\alpha_{1}\beta_{2}}\right)\pi^{*} + \left(\frac{\mu_{j}}{2\alpha_{1}\beta_{2}}\right)\sigma_{\pi}^{2}$$
$$b = 1 + \frac{1}{\alpha_{1}\beta_{2}}, \quad c = \frac{1+\beta_{1}}{\beta_{2}}$$
$$\zeta_{t} = \left(\frac{1}{\alpha_{1}\beta_{2}}\right)(\gamma u_{t} + \varsigma v_{t})$$

• Only the intercept is member-specific

# **How Members Resolve Difference of Opinion**?

• Following a (consensus) protocol

First stage

Members vote by simple majority rule whether to increase or a decrease the interest rate with respect to the status quo

Second stage

Members vote by super majority rule on successive  $\epsilon$  increases (or decreases) until a proposal is defeated and the interest rate in the latest proposal is adopted

• See Figure 2

#### Consensus Model



### **Policy Outcome**

The policy outcome is

$$i_{t} = \begin{cases} i_{M+K,t}^{*}, & \text{if } i_{t-1} > i_{M+K,t}^{*}, \\ i_{t-1}, & \text{if } i_{M-K,t}^{*} \leqslant i_{t-1} \leqslant i_{M+K,t}^{*}, \\ i_{M-K,t}^{*}, & \text{if } i_{t-1} < i_{M-K,t}^{*}. \end{cases}$$

where

$$i_{M+K,t}^* = a_{M+K} + b\pi_t + cy_t + \zeta_t$$

and

$$i_{M-K,t}^* = a_{M-K} + b\pi_t + cy_t + \zeta_t$$

are the preferred policies of members M + K and M - K

# Implications

- Nonlinear relation between interest rates and fundamentals
- Endogenous inaction region
- Endogenous autocorrelation of the nominal interest rate
- Source: Friction in decision making process

### **Estimation**

- Three regimes (cuts, no changes and increases)
- Perfect sample separation
- Then, the log likelihood function is

$$L(\theta) = -(T_1 + T_3)\sigma + \sum_{i_t \in \Xi_1} \log \phi \left( \frac{i_t - a_{M+K} - b\pi_t - cy_t}{\sigma} \right) \\ + \sum_{i_t \in \Xi_2} \log(\Phi(z_{M-K,t}^*) - \Phi(z_{M+K,t}^*)) + \sum_{i_t \in \Xi_3} \log \phi \left( \frac{i_t - a_{M-K} - b\pi_t - cy_t}{\sigma} \right)$$

where  $\theta = \{a_{M+K}, a_{M-K}, b, c, \sigma\}$ 

#### Table 1. Bank of Canada

|      | Monetary    | Single     |         |
|------|-------------|------------|---------|
|      | Committee   | Banker     | Data    |
|      | A. Model Se | election C | riteria |
| AIC  | 127.53      | 133.64     |         |
| RMSE | 0.506       | 0.850      |         |
| MAE  | 0.388       | 0.715      |         |

| Autocorrelation | 0.546 | 0.014 | 0.873 |
|-----------------|-------|-------|-------|
| Proportion of   |       |       |       |
| Cuts            | 0.204 | 0.486 | 0.280 |
| Increases       | 0.253 | 0.513 | 0.300 |
| No changes      | 0.544 | 0     | 0.420 |

# Model Fit Bank of Canada



### Table 2. Bank of England

|      | Monetary    | Single     |         |
|------|-------------|------------|---------|
|      | Committee   | Banker     | Data    |
|      | A. Model Se | election C | riteria |
| AIC  | 206.40      | 317.33     |         |
| RMSE | 0.329       | 1.013      |         |
| MAE  | 0.251       | 0.885      |         |

| Autocorrelation | 0.766 | 0.179 | 0.977 |
|-----------------|-------|-------|-------|
| Proportion of   |       |       |       |
| Cuts            | 0.113 | 0.492 | 0.111 |
| Increases       | 0.135 | 0.508 | 0.157 |
| No changes      | 0.752 | 0     | 0.731 |

| Table 3. E | European | Central | Bank |
|------------|----------|---------|------|
|------------|----------|---------|------|

|      | Monetary    | Single     |         |
|------|-------------|------------|---------|
|      | Committee   | Banker     | Data    |
|      | A. Model Se | election C | riteria |
| AIC  | 160.73      | 326.75     |         |
| RMSE | 0.225       | 0.809      |         |
| MAE  | 0.138       | 0.678      |         |

| B. Quantitative | Predictions |
|-----------------|-------------|
|-----------------|-------------|

| Autocorrelation | 0.865 | 0.248 | 0.988 |
|-----------------|-------|-------|-------|
| Proportion of   |       |       |       |
| Cuts            | 0.076 | 0.504 | 0.106 |
| Increases       | 0.056 | 0.496 | 0.061 |
| No changes      | 0.867 | 0     | 0.833 |
|                 |       |       |       |

#### Table 4. Swedish Riksbank

|      | Monetary    | Single     |         |
|------|-------------|------------|---------|
|      | Committee   | Banker     | Data    |
|      | A. Model Se | election C | riteria |
| AIC  | 136.48      | 149.60     |         |
| RMSE | 0.255       | 0.593      |         |
| MAE  | 0.180       | 0.457      |         |

| Autocorrelation | 0.821 | 0.369 | 0.972 |
|-----------------|-------|-------|-------|
| Proportion of   |       |       |       |
| Cuts            | 0.155 | 0.502 | 0.177 |
| Increases       | 0.148 | 0.498 | 0.139 |
| No changes      | 0.697 | 0     | 0.684 |

#### Table 5. U.S. Federal Reserve

|      | Monetary    | Single     |         |
|------|-------------|------------|---------|
|      | Committee   | Banker     | Data    |
|      | A. Model Se | election C | riteria |
| AIC  | 447.30      | 592.35     |         |
| RMSE | 0.745       | 1.538      |         |
| MAE  | 0.547       | 1.291      |         |

| Autocorrelation | 0.840 | 0.442 | 0.989 |
|-----------------|-------|-------|-------|
| Proportion of   |       |       |       |
| Cuts            | 0.193 | 0.496 | 0.234 |
| Increases       | 0.202 | 0.504 | 0.259 |
| No changes      | 0.605 | 0     | 0.506 |

### Model Fit

### Bank of England

### ECB





Riksbank



U.S. Fed

